• Title/Summary/Keyword: 질병예측

Search Result 354, Processing Time 0.027 seconds

An Improvement of Personalized Computer Aided Diagnosis Probability for Smart Healthcare Service System (스마트 헬스케어 서비스를 위한 통계학적 개인 맞춤형 질병예측 기법의 개선)

  • Min, Byung-won
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.79-84
    • /
    • 2016
  • A novel diagnosis scheme PCADP(personalized computer aided diagnosis probability) is proposed to overcome the problems mentioned above. PCADP scheme is a personalized diagnosis method based on ontology and it makes the bio-data analysis just a 'process' in the Smart healthcare service system. In addition, we offer a semantics modeling of the smart healthcare ontology framework in order to describe smart healthcare data and service specifications as meaningful representations based on this PCADP. The PCADP scheme is a kind of statistical diagnosis method which has real-time processing, characteristics of flexible structure, easy monitoring of decision process, and continuous improvement.

Korean Symptom-Based Disease Prediction Model according to Input Data Format and Positive/Negative (입력 데이터 형식 및 Positive/Negative에 따른 한국어 증상 기반 질병 예측 모델)

  • Min-Jung Kim;In-Whee Joe
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.418-421
    • /
    • 2023
  • 본 논문은 Word2Vec를 이용하여 한국어 증상 기반 질병 예측 모델을 제시한다. 아산병원 질환 백과의 크롤링 데이터를 세 가지 형식으로 나누어, 모델에 알맞은 데이터 형식을 찾고 모델에 적용한다. 가장 모델에 맞는 데이터 형식은 증상별 질병과 질병별 증상을 합친 경우이다. 데이터의 양을 늘려 임베딩 스페이스를 넓혔고, 가장 중요한 증상과 질병의 유사도도 정확하게 출력되었다. 이는 유사도가 높은 질병과 증상들이 제대로 학습이 되었다는 것을 알 수 있다. 이렇게 만들어진 예측 모델에 positive 증상을 입력하면 유사도가 향상되고, negative에 입력하면 하락하는 결과를 확인했다. 따라서 환자의 증상을 positive에 넣으면, 그 증상을 가진 질병이 가까워지는 반면, 환자의 증상이 아닌 증상을 negative에 넣으면, 환자에게 맞지 않는 질병이 멀어진다. 그러므로 환자의 상태에 맞는 질병을 유추해, 의사나 환자가 증상에 대한 질병을 알고 싶을 때 또는 검색에 유용하게 사용할 수 있다. 더불어, 질병의 진료과 데이터를 추가하여, 환자에게 맞는 진료과를 찾는 데도 도움을 줄 수 있다.

Prediction of Calf Diseases using Ontology and Bayesian Network (온톨로지와 베이지안 네트워크를 활용한 송아지 질병 예측)

  • Kang, Yun-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1898-1908
    • /
    • 2017
  • Accurately Diagnosing and managing disease in livestock can help sustainable livestock productivity and maintain human health. Maintaining the health of livestock is an important part of human health. The prediction of calf diseases is carried out by pre-processing the calf biometric data. calf information is used as information for calf birth history, calf biometric information, environmental information on housing, and disease management. It can be developed as an ontology and used as a knowledge base. The Bayesian network was used and inferred in the process of analyzing the correlations of calf diseases. Prediction of diseases based on knowledge of calf disease on calf diseases name, causes, occur timing, care and symptoms, etc., will be able to respond to accurate disease treatment and prevent other livestock from being infected in advance.

A Study on Disease Prediction of Paralichthys Olivaceus using Deep Learning Technique (딥러닝 기술을 이용한 넙치의 질병 예측 연구)

  • Son, Hyun Seung;Lim, Han Kyu;Choi, Han Suk
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.62-68
    • /
    • 2022
  • To prevent the spread of disease in aquaculture, it is a need for a system to predict fish diseases while monitoring the water quality environment and the status of growing fish in real time. The existing research in predicting fish disease were image processing techniques. Recently, there have been more studies on disease prediction methods through deep learning techniques. This paper introduces the research results on how to predict diseases of Paralichthys Olivaceus with deep learning technology in aquaculture. The method enhances the performance of disease detection rates by including data augmentation and pre-processing in camera images collected from aquaculture. In this method, it is expected that early detection of disease fish will prevent fishery disasters such as mass closure of fish in aquaculture and reduce the damage of the spread of diseases to local aquaculture to prevent the decline in sales.

Livestock Telemedicine System Prediction Model for Human Healthy Life (인간의 건강한 삶을 위한 가축원격 진료 예측 모델)

  • Kang, Yun-Jeong;Lee, Kwang-Jae;Choi, Dong-Oun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.335-343
    • /
    • 2019
  • Healthy living is an essential element of human happiness. Quality eating provides the basis for life, and the health of livestock, which provides meat and dairy products, has a direct impact on human health. In the case of calves, diarrhea is the cause of all diseases.In this paper, we use a sensor to measure calf 's biometric data to diagnose calf diarrhea. The collected biometric data is subjected to a preprocessing process for use as meaningful information. We measure calf birth history and calf biometrics. The ontology is constructed by inputting environmental information of housing and biochemistry, immunity, and measurement information of human body for disease management. We will build a knowledge base for predicting calf diarrhea by predicting calf diarrhea through logical reasoning. Predict diarrhea with the knowledge base on the name of the disease, cause, timing and symptoms of livestock diseases. These knowledge bases can be expressed as domain ontologies for parent ontology and prediction, and as a result, treatment and prevention methods can be suggested.

GIS-based Database for Development of Disease Prediction Model (질병 예측 모델 개발을 위한 지리정보시스템(GIS)기반 데이터베이스 구축)

  • Jang, Wooyeong;Woo, Changwoo;Song, Harim;Shon, Ho Sun;Ryu, Keun Ho;Kim, YoungGyu
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.708-711
    • /
    • 2014
  • 국민소득 증가와 고령화 사회에 진입하면서 다양한 의료소비가 의료서비스산업에 영향을 미치고 있으며, 이러한 사회 구조 및 환경변화에 따라 새로운 질병에 대한 대응 또한 절실히 요구되고 있다. 질병 예측을 위한 연구는 기후변화와 질병, 건강행태와 질병, 사회적 위치와 질병 등 질병에 영향을 주는 많은 요인들이 있다. 그러나 이러한 요인들을 통합, 분석 활용하는 데는 해결해야 할 문제들이 많이 있다. '정부3.0 공공데이터 개방 정책' 을 통해 질병에 관련된 자료가 공개 되면서 본 연구에서는 2010년부터 2012년까지의 질병에 영향을 주는 공공데이터를 연도별로 통합하여 지리정보시스템(GIS)기반 데이터베이스를 구축하고 활용 할 수 있게 하였다. 향후 기후변화에 민감한 질병을 찾기 위해 해당기관의 자료를 활용하여 월별로 데이터베이스를 구축하고, 이를 기반으로 의료서비스의 활성화 및 효율성에 기여 할 수 있다.

Image Augmentation of Paralichthys Olivaceus Disease Using SinGAN Deep Learning Model (SinGAN 딥러닝 모델을 이용한 넙치 질병 이미지 증강)

  • Son, Hyun Seung;Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.322-330
    • /
    • 2021
  • In modern aquaculture, mass mortality is a very important issue that determines the success of aquaculture business. If a fish disease is not detected at an early stage in the farm, the disease spreads quickly because the farm is a closed environment. Therefore, early detection of diseases is crucial to prevent mass mortality of fish raised in farms. Recently deep learning-based automatic identification of fish diseases has been widely used, but there are many difficulties in identifying objects due to insufficient images of fish diseases. Therefore, this paper suggests a method to generate a large number of fish disease images by synthesizing normal images and disease images using SinGAN deep learning model in order to to solve the lack of fish disease images. We generate images from the three most frequently occurring Paralichthys Olivaceus diseases such as Scuticociliatida, Vibriosis, and Lymphocytosis and compare them with the original image. In this study, a total of 330 sheets of scutica disease, 110 sheets of vibrioemia, and 110 sheets of limphosis were made by synthesizing 10 disease patterns with 11 normal halibut images, and 1,320 images were produced by quadrupling the images.

The improvement of Korean Standard Classification of Diseases prediction model by applying the hierarchical classification system (계층적 분류체계를 적용한 한국질병사인분류 예측 모델의 개선)

  • Geunyeong Jeong;Joosang Lee;Juoh Sun;Seokwon, Jeong;Hyunjin Shin;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.59-64
    • /
    • 2022
  • 한국표준질병사인분류(KCD)는 사람의 질병과 사망 원인을 유사성에 따라 체계적으로 유형화한 분류체계이다. KCD는 계층적 분류체계로 구성되어 있어 분류마다 연관성이 존재하지만, 일반적인 텍스트 분류 모델은 각각의 분류를 독립적으로 예측하기 때문에 계층적 정보를 반영하는 데 한계가 있다. 본 논문은 계층적 분류체계를 적용한 KCD 예측 모델을 제안한다. 제안 방법의 효과를 입증하기 위해 비교 실험을 진행한 결과 F1-score 기준 최대 0.5%p의 성능 향상을 확인할 수 있었다. 특히 비교 모델이 잘 예측하지 못했던 저빈도의 KCD에 대해서 제안 모델은 F1-score 기준 최대 1.1%p의 성능이 향상되었다.

  • PDF

Design of Health Warning Model on the Basis of CRM by use of Health Big Data (의료 빅데이터를 활용한 CRM 기반 건강예보모형 설계)

  • Lee, Sangwon;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1460-1465
    • /
    • 2016
  • Lots of costs threaten the sustainability of the national health-guarantee system. Despite research by the national center for disease control and prevention on health care dynamics with its auditing systems, there are still restrictions of time limitation, sample limitation, and, target diseases limitation. Against this backdrop, using huge volume of total data, many technologies could be fully adopted to the preliminary forecasting and its target-disease expanding of health. With structured data from the national health insurance and unstructured data from the social network service, we attempted to design a model to predict disease. The model can enhance national health and maximize social benefit by providing a health warning service. Also, the model can reduce the advent increase of national health cost and predict timely disease occurrence based on Big Data analysis. We researched related medical prediction cases and performed an experiment with a pilot project so as to verify the proposed model.