• Title/Summary/Keyword: 질병분류

Search Result 506, Processing Time 0.03 seconds

Classification of Tongue Coating for Tongue Diagnosis in Korean Medicine (한의학의 설진을 위한 설태 분류 방법)

  • Kim, Keun-Ho;Choi, Eun-Ji;Lee, Si-Woo;Kim, Jong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1985-1986
    • /
    • 2008
  • 혀의 상태는 인체 내부의 생리적 병리적 특성의 변화를 나타내므로, 한의학에서 중요한 지수가 된다. 한의학에서 설진 방법은 환자의 설질과 설태의 변화를 관찰함으로써 질병을 진찰하는 방법이므로, 편리할 뿐만 아니라 비침습적이고, 널리 쓰이고 있다. 그러나 설진은 광원, 환자의 자세, 한의사의 상태와 같은 검사 환경에 의해 영향을 받는다. 표준화된 진단을 위한 자동 진단 시스템을 개발하기 위하여 질병의 예후를 판단할 수 있는 설태 분류 방법은 필수적이지만, 컬러의 경계가 모호하므로 설태와 설질을 구분하기는 매우 어렵다. 이 논문에서 분할된 설체 내에서 컬러를 계층적으로 분류하여 설태를 분류하는 방법을 제안한다. 또한 설태 영역을 정확하게 분할하도록 하였다. 제안된 방법은 표준화된 진단을 가능하도록 한다.

  • PDF

Newcastle Disease : ND (닭의 뉴켓슬병)

  • 모인필
    • Korean Journal of Veterinary Pathology
    • /
    • v.6 no.2
    • /
    • pp.91-99
    • /
    • 2002
  • 뉴켓슬병은 전염성이 매우 빠르고 폐사율도 높은 바이러스성 질병으로 닭, 비둘기, 꿩, 메추리 등 거의 모든 조류에서 발생되며 호흡기 증상, 소화기 증상 및 신경증상이 나타난다. 이 질병은 국제수역사무국(OIE)에서 지정하는 리스트 A 질병이며 국내에서는 제l종 가축전염병으로 분류되고 있다. 이 질병은 1926년 인도네시아 자바섬과 같은 해 영국 뉴켓슬지방에서 처음으로 확인된 것을 계기로 질병발생 지방명을 따서 뉴켓슬명이라 불리게 되었다. 국내에서의 뉴켓슬병 발생은 일본인 오찌(Ochi)와 하시모토(Hashimoto)에 의해 처음으로 확인된 바 있으며 이들의 보고에 의하면 1924년에 이미 이 질병 발생이 국내에 있었던 것으로 알려져 있다. 80여 년이 지난 오늘날에도 뉴켓슬병은 국내에서 계속 발생되고 있으며 돼지콜레라 및 구제역과 함께 OIE 리스트 A 질병 3종 중 하나라는 오명을 갖고 있다. (중략)

  • PDF

Analysis of COVID-19 Context-awareness based on Clustering Algorithm (클러스터링 알고리즘기반의 COVID-19 상황인식 분석)

  • Lee, Kangwhan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.755-762
    • /
    • 2022
  • This paper propose a clustered algorithm that possible more efficient COVID-19 disease learning prediction within clustering using context-aware attribute information. In typically, clustering of COVID-19 diseases provides to classify interrelationships within disease cluster information in the clustering process. The clustering data will be as a degrade factor if new or newly processing information during treated as contaminated factors in comparative interrelationships information. In this paper, we have shown the solving the problems and developed a clustering algorithm that can extracting disease correlation information in using K-means algorithm. According to their attributes from disease clusters using accumulated information and interrelationships clustering, the proposed algorithm analyzes the disease correlation clustering possible and centering points. The proposed algorithm showed improved adaptability to prediction accuracy of the classification management system in terms of learning as a group of multiple disease attribute information of COVID-19 through the applied simulation results.

Clinical Analysis of Marine Telemedicine Cases for Ocean-Going Vessel Crew (원양선박 선원들의 해양원격의료 실태를 통한 임상분석)

  • Lee, Chang-Min;Park, Ik-Min;Choi, Byung-Kwan
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The purpose of this study is to contribute to the study of the prevention of diseases and promotion of health of ocean going vessel crew members, through the medical diagnosis and disease classification efforts of this study. From the second half of 2016 to 2017, the diagnosis and health characteristics of 195 crew members were collected through counseling, treatment, and emergency care for about 1 year and 2 months. As a result, it is noted that the incidence of diseases was in the order of urticaria (5.6%), lumbar sprain (4.1%), acute gastroenteritis (3.1%) and anxiety (3.1%). In categorical review, the incidence of musculo-skeletal disease was the most common (25.1%) which was followed by skin disease (17.9%) and digestive disease (11.3%). In addition, the disease that was noted as was the most common in the under 30 years old category, and the incidence of the disease was high in the crew group. Finally, there was a difference between the pathogenesis (trauma vs disease, etc.) (p <.001) and the type of vessel (merchant ship and fishing vessel) (p <.005) as noted in this case.

Application of Gaussian Mixture Model for Text-based Biomarker Detection (텍스트 기반의 바이오마커 검출을 위한 가우시안 혼합 모델의 응용)

  • Oh, Byoung-Doo;Kim, Ki-Hyun;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.550-551
    • /
    • 2018
  • 바이오마커는 체내의 상태 및 변화를 파악할 수 있는 지표이다. 이는 암을 비롯한 다양한 질병에 대하여 진단하는데 활용도가 높은 것으로 알려져 있으나, 새로운 바이오마커를 찾아내기 위한 임상 실험은 많은 시간과 비용을 소비되며, 모든 바이오마커가 실제 질병을 진단하는데 유용하게 사용되는 것은 아니다. 따라서 본 연구에서는 자연어처리 기술을 활용해 바이오마커를 발굴할 때 요구되는 많은 시간과 비용을 줄이고자 한다. 이 때 다양한 의미를 가진 어휘들이 해당 질병과 연관성이 높은 것으로 나타나며, 이들을 분류하는 것은 매우 어렵다. 따라서 우리는 Word2Vec과 가우시안 혼합 모델을 사용하여 바이오마커를 분류하고자 한다. 실험 결과, 대다수의 바이오마커 어휘들이 하나의 군집에 나타나는 것을 확인할 수 있었다.

  • PDF

Analysis of the Correlation between Fine Dust and Disease Using Big Data (빅데이터를 활용한 미세먼지와 질병 간의 상관관계 분석)

  • Nam, Kyeongyoon;Moon, Soyoung;Kim, Hyon Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.368-370
    • /
    • 2022
  • WHO 산하의 국제암연구소는 2013 년부터 미세먼지를 1 급 발암 물질로 분류하고 있으며 미세먼지 노출에 대한 질병 발생의 심각성은 점점 수면 위로 드러나고 있는 추세다. 본 연구에서는 국민건강보험공단의 진료 내역 정보 데이터와 2015 년부터 2021 년까지의 미세먼지 및 초미세먼지 월 평균 농도 데이터를 이용하여 미세먼지 및 초미세먼지 농도와 순환기계와 호흡기계 질병 간의 상관 관계를 보이고, 연관성있는 질병을 찾아내었다. 이를 위해 시계열분석, 상관분석, 빈도분석을 시행하였으며 실험 결과 호흡기질환에서는 급성 부비동염, 코의 농양 등의 질병과 순환기질환에서는 상세불명의 원발성 고혈압, 폐색전증이 상관관계가 높은 질병으로 판명되었다.

Application of MAP and MLP Classifier on Raman Spectral Data for Classification of Liver Disease (라만 스펙트럼에서 간 질병 분류를 위한 MAP과 MLP 적용 연구)

  • Park, Aa-Ron;Baek, Seong-Joon;Yang, Bing-Xin;Na, Seung-You
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.432-438
    • /
    • 2009
  • In this paper, we evaluated the performance of the automatic classifier applied for the discrimination of acute alcoholic liver injury and chronic liver fibrosis. The classifier uses the discriminant peaks of the preprocessed Raman spectrum as a feature set. In preprocessing step, we subtract baseline and apply Savitzky-Golay smoothing filter which is known to be useful at preserving peaks. After identifying discriminant peaks from the spectra, we carried out the classification experiments using MAP and neural networks. According to the experimental results, the classifier shows the promising results to diagnosis alcoholic liver injury and chronic liver fibrosis. Classification results over 80% means that the peaks used as a feature set is useful for diagnosing liver disease.

Identifying Compound Risk Factors of Disease by Evolutionary Learning of SNP Combinatorial Features (SNP 조합 인자들의 진화적 학습 방법 기반 질병 관련 복합적 위험 요인 추출)

  • Rhee, Je-Keun;Ha, Jung-Woo;Bae, Seol-Hui;Kim, Soo-Jin;Lee, Min-Su;Park, Keun-Joon;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.928-932
    • /
    • 2009
  • Most diseases are caused by complex processes of various factors. Although previous researches have tried to identify the causes of the disease, there are still lots of limitations to clarify the complex factors. Here, we present a disease classification model based on an evolutionary learning approach of combinatorial features using the data sets from the genetics and cohort studies. We implemented a system for finding the combinatorial risk factors and visualizing the results. Our results show that the proposed method not only improves classification accuracy but also identifies biologically meaningful sets of risk factors.

A Study on the Disease Prevention Monitoring System Using IoMT Environment (IoMT 환경을 이용한 질병 예방 모니터링 시스템에 관한 연구)

  • Sung-Ho, Sim
    • Journal of Industrial Convergence
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2023
  • Recently, viral infectious diseases and new diseases are not limited to one region, but are spreading worldwide, causing serious economic and social damage. In addition, the development cycle of new diseases is shortening, and the rate of spread is accelerating. In order to prevent the spread of disease, passive forms of response after a disease outbreak, such as personal and regional quarantine and border closure, are prioritized. This type of response has many shortcomings as a fundamental response to preventing the spread of disease. Therefore, this study proposes a disease prevention monitoring system including new disease occurrence information. In this study, disease information and user information are collected through the establishment of the IoMT environment. Information collection using an agent collects and classifies data registered in the disease information server. In the IoMT environment, user data is collected, and whether the user is infected with a disease is evaluated and provided to the user. Through this study, individual disease symptom information can be provided and active countermeasures against the spread of disease can be provided.

Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier (Genetic Algorithm과 다중부스팅 Classifier를 이용한 암진단 시스템)

  • Ohn, Syng-Yup;Chi, Seung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • It is believed that the anomalies or diseases of human organs are identified by the analysis of the patterns. This paper proposes a new classification technique for the identification of cancer disease using the proteome patterns obtained from two-dimensional polyacrylamide gel electrophoresis(2-D PAGE). In the new classification method, three different classification methods such as support vector machine(SVM), multi-layer perceptron(MLP) and k-nearest neighbor(k-NN) are extended by multi-boosting method in an array of subclassifiers and the results of each subclassifier are merged by ensemble method. Genetic algorithm was applied to obtain optimal feature set in each subclassifier. We applied our method to empirical data set from cancer research and the method showed the better accuracy and more stable performance than single classifier.