• Title/Summary/Keyword: 진화전략 알고리즘

Search Result 78, Processing Time 0.043 seconds

The Optimum Design of Truss Dome Structures by Evolution Strategy (진화전략을 이용한 트러스 돔 구조물의 최적설계)

  • Han, Sang-Eul;Kim, Man-Jung;Lee, Jae-Young;Ryu, Ji-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.396-399
    • /
    • 2009
  • 본 논문의 연구 목적은 생물의 진화 현상을 모방한 진화전략 알고리즘을 이용하여 돔형 트러스 구조물을 최적화 설계하는 것이다. 최적화 방법으로 부재 단면적의 최적화 값을 찾음으로써 최적 목적값 또는 최소 구조물 중량을 산출하는데 목적이 있다. 진화전략 알고리즘은 1960년대 중반, 실수기반 매개변수의 최적화로부터 소개되어 1970년대 많은 발전을 하였다. 진화전략은 컴퓨터 시스템 최적화 알고리즘 연구분야에서 많이 활용되며, 더불어 사용되는 유전자 알고리즘과는 다른 몇 개의 연산자를 가지고 있다. 본 논문에서는 진화전략에서 사용되는 연산자를 소개하고 연산자간의 논리 흐름과 수치예제로써 최적설계의 적합성을 확인해볼 수 있다.

  • PDF

PC Cluster based Parallel Evolutionary Algorithm for the Service Restoration of Distribution System (PC 클러스터 기반 병렬 적응진화 알고리즘을 이용한 배전계통 고장복구)

  • Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.158-161
    • /
    • 2005
  • 본 논문에서는 해집단을 다음세대로 진화시킬 때, 유전알고리즘과 진화전략을 동시에 사용하고, 적합도에 따라 복제하는 과정에서 유전알고리즘과 진화전략이 적용될 해집단의 비율이 적응적으로 변경되는 적응진화 알고리즘을 제안하였다. 또한 제안한 알고리즘을 실시간 적용하기 위해 PC 클러스터 시스템으로 병렬처리하여 최적해 탐색 성능 및 탐색속도를 개선하였다. 제안한 알고리즘을 실 배전계통 고장복구 문제에 적용해 본 결과, 유전 알고리즘 또는 진화전략을 단독으로 사용한 경우보다 제안한 방법이 더 빠른 시간내에 우수한 최적해를 탐색하였고, 병렬 연산의 수행 노드수 증가에 따라 최적해 탐색성능은 유지하면서 최적해 탐색시간을 상당히 단축시킴을 확인하였다.

  • PDF

PC Cluster based Parallel Evolutionary Algorithm for the Reconfiguration of Distribution System (PC 클러스터 기반 병렬 적응진화 알고리즘을 이용한 배전계통 최적 재구성)

  • Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.162-165
    • /
    • 2005
  • 본 논문에서는 해집단을 다음세대로 진화시킬 때, 유전알고리즘과 진화전략을 동시에 사용하고, 적합도에 따라 복제하는 과정에서 유전알고리즘과 진화전략이 적용될 해집단의 비율이 적응적으로 변경되는 적응진화 알고리즘을 제안하였다. 또한 제안한 알고리즘을 실시간 적용하기 위해 PC 클러스터 시스템으로 병렬처리하여 최적해 탐색 성능 및 탐색속도를 개선하였다. 제안한 알고리즘을 참고문헌의 배전계통 재구성 문제에 적용해본 결과, 유전 알고리즘 또는 진화전략을 단독으로 사용한 경우보다 제안한 방법이 더 빠른 시간내에 우수한 최적해를 탐색하였고, 병렬 연산의 수행 노드수 증가에 따라 최적해 탐색성능은 유지하면서 최적해 탐색 시간을 상당히 단축시킴을 확인하였다.

  • PDF

Observation of Bargaining Game using Co-evolution between Particle Swarm Optimization and Differential Evolution (입자군집최적화와 차분진화알고리즘 간의 공진화를 활용한 교섭게임 관찰)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.549-557
    • /
    • 2014
  • Recently, analysis of bargaining game using evolutionary computation is essential issues in field of game theory. In this paper, we observe a bargaining game using co-evolution between two heterogenous artificial agents. In oder to model two artificial agents, we use a particle swarm optimization and a differential evolution. We investigate algorithm parameters for the best performance and observe that which strategy is better in the bargaining game under the co-evolution between two heterogenous artificial agents. Experimental simulation results show that particle swarm optimization outperforms differential evolution in the bargaining game.

A Study On The Parameter Selection of ($1+{\lambda}$) Evolution Strategy (($1+{\lambda}$)진화 전략 알고리즘의 파라미터 선정에 대한 연구)

  • Park, Sang-Hun;An, Kwang-Ok;Cho, Sung-Mun;Cho, Dong-Hyeok;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.75-77
    • /
    • 2001
  • 전기기기 최적 설계에 있어서 결정론적 최적화 방법은 국부해를 빠른 속도로 찾을 수 있지만 최적값에 대한 보장이 어려우므로 비결정론적 방법인 진화전략 알고리즘을 많이 사용한다. 전기기기 최적화에 쓰이는 많은 확률적 알고리즘 중에서 진화 전략 알고리즘은 시뮬레이티드 어닐링과 유전 알고리즘을 결합한 방법으로, 전체 최적점 탐색이 가능할 뿐만 아니라 알고리즘이 비교적 간단하면서도 빠른 수렴 특성을 갖고 있다. 그리고, 종류 또한 다양하다. 진화 전략 알고리즘 중에서 중요한 것은 수렴속도와 성공률에 기여하는 파라미터들을 잘 선정하는 것이다. 본 논문에서는, 진화 전략 알고리즘의 중요한 인자인 자식 세대의 개수인 ${\lambda}$값과 ${\alpha}$값을 변화시켜 가면서 변수 개수에 따른 최적화된 조합을 제시한다. 본 논문의 결과는 전기기기 최적 설계에 응용하는데 도움이 될 것으로 사료된다.

  • PDF

Fault-tolerant Analog Circuit Design using Average and Worst Case Analysis Evolutionary Strategy (평균 및 최악 분석 진화전략을 이용한 소자 값 변경에 강건한 아날로그 회로 자동 설계)

  • Park, Hyun-Soo;Park, A-Rum;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.372-374
    • /
    • 2012
  • 아날로그 회로는 가장 기본적인 전기/전자 회로로써 현재도 높은 중요도를 가지고 있지만, 설계를 위해서는 전문적인 지식이나 기술이 반드시 필요하다. 그래서, 아날로그 회로를 설계하기 위해 진화 연산을 이용한 기법이 연구되어 왔다. 진화연산은 최적화 문제를 해결하는 한 방법으로써 다양한 문제에 적용 가능하다. 하지만, 많은 경우 매우 오랜 시간이 걸려 재현이 어렵고 계산비용이 많이 요구되어왔다. 하지만, 최근 들어 진화전략을 이용하여 작은 집단 크기로 아날로그 회로를 진화시킬 수 있는 방법이 제안되었다. 본 연구에서는 진화전략을 이용한 방법에 기반하여, 내고장성을 가진 회로를 설계하는 기법을 제안하고, 실험을 통하여 기본 진화전략 알고리즘과 비교한다. 그 결과, 제안한 방법을 통해 생성한 회로는 기본 알고리즘을 사용했을 때 보다 고장으로 인해 소자의 값이 변경되었을 때 성능하락이 더 적었다.

Optimal Design of L1B4 Linear Ultrasonic Motor using Evolutionary Strategy Algorithm (진화 전략 알고리즘을 이용한 L1B4 선형 초음파 모터의 형상 최적 설계)

  • Rho, Jong-Seok;Jung, Hyun-Kyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.619-622
    • /
    • 2004
  • 본 논문에서는 진화 전략 알고리즘(Evolution Strategy Algorithm)를 이용한 L1B4 선형 초음파 모터(L1B4-USM)의 최적 설계 기법을 제시하고자 한다. 유한요소법(Finite Element Method)을 정식화 하였고, 2차원 유한요소법을 L1B4-USM의 임피던스와 모드의 해석을 통해 검증 하였다. 검증된 2차원 유한 요소 해석을 통한 선형 초음파 모터의 임피던스 해석, mode 해석 및 최적 모드의 탐색 프로그램, 자동 요소분할 프로그램 그리고 진화 전략 알고리즘을 수행하였다. 이를 통해 선형 초음파 모터의 L1모드, B4 모드 각각이 발생하는 공진주파수를 일치시키며, 최대 속도를 얻기 위한 최적 설계기법을 완성 하였고, 최적화된 형상의 L1B4-USM를 설계하였다.

  • PDF

ACDE2: An Adaptive Cauchy Differential Evolution Algorithm with Improved Convergence Speed (ACDE2: 수렴 속도가 향상된 적응적 코시 분포 차분 진화 알고리즘)

  • Choi, Tae Jong;Ahn, Chang Wook
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1090-1098
    • /
    • 2014
  • In this paper, an improved ACDE (Adaptive Cauchy Differential Evolution) algorithm with faster convergence speed, called ACDE2, is suggested. The baseline ACDE algorithm uses a "DE/rand/1" mutation strategy to provide good population diversity, and it is appropriate for solving multimodal optimization problems. However, the convergence speed of the mutation strategy is slow, and it is therefore not suitable for solving unimodal optimization problems. The ACDE2 algorithm uses a "DE/current-to-best/1" mutation strategy in order to provide a fast convergence speed, where a control parameter initialization operator is used to avoid converging to local optimization. The operator is executed after every predefined number of generations or when every individual fails to evolve, which assigns a value with a high level of exploration property to the control parameter of each individual, providing additional population diversity. Our experimental results show that the ACDE2 algorithm performs better than some state-of-the-art DE algorithms, particularly in unimodal optimization problems.

Variable Power Control of Inverter Spot Welding Machine using Evolution Algorithm (진화알고리즘을 이용한 인버터 스폿용접기의 가변전력 제어)

  • 김재문;김이훈;민병권;원충연;김규식;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.384-394
    • /
    • 2002
  • In this paper, a new control strategy is proposed to improve the quality of the welding products. The conventional nonlinear power control system of spot welders is linearized using nonlinear feedback linearization technique based on differential geometry theory. An evolution strategy(ES) geometry is used to find optimal gain of PI controllers. It tries to find out the optimal control parameters by imitating the natural evolution. Some Simulation and experimental results show that the proposed variable power control system using ES algorithm has better dynamic performances than the conventional one.

Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm (게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화)

  • 김지윤;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.395-398
    • /
    • 2002
  • 본 논문에서는 ‘다목적 함수 최적화 문제(Multi-objective Optimization Problem MOP)’를 풀기 위하여 유전자 알고리즘을 진화적 게임 이론 적용시킨 ‘내쉬 유전자 알고리즘(Nash GA)’과 본 논문에서 새로이 제안하는 공진화 알고리즘의 구조를 설명하고 이 두 알고리즘의 결과를 시뮬레이션을 통하여 비교 검토함으로써 ‘진화적 게임 이론(Evolutionary Game Theory : EGT)’의 두 가지 아이디어 -‘내쉬의 균형(Equilibrium)’과 ‘진화적 안정전략(Evolutionary Stable Strategy . ESS)’-에 기반한 최적화 알고리즘들이 다목적 함수 문제의 최적해를 탐색할 수 있음을 확인한다.