• 제목/요약/키워드: 진화신경회로망

검색결과 34건 처리시간 0.016초

진화전략과 신경회로망에 의한 능도 현가장치의 제어기 설계 (A Controller Design for Active Suspension System Using Evolution Strategy and Neural Network)

  • 김대준;천종민;전향식;최영규;김성신
    • 제어로봇시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.209-217
    • /
    • 2001
  • In this paper, we propose a linear quadratic regulator(LQR) controller design for the active suspension using evolution strategy(ES) and neural network. We can improve the inherent suspension problem, the trade-off between ride quality and suspension travel by selecting appropriate weight in the LQR-objective function. Since any definite rules for selecting weights do not exist, we replace the designers trial-and-error method with ES that is an optimization algorithm. Using the ES, we can find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle. The relationship between the frequencies and proper control gains are generalized by use of the neural networks. When the vehicle is driven, the trained neural network is activated and provides the proper gains for operating frequencies. And we adopted double sky-hook control to protect car component when passing large bump. Effectiveness of our design has been shown compared to the conventional sky-hook controller through simulation studies.

  • PDF

피지이론과 유전알고리츰의 합성에 의한 Flexible Manipulator 제어기 설계 (Design of a Controller for a Flexible Manipulator Using Fuzzy Theory and Genetic Algorithm)

  • 이기성;조현철
    • 한국지능시스템학회논문지
    • /
    • 제12권1호
    • /
    • pp.61-66
    • /
    • 2002
  • 본 논문에서는 Flexible Manipulator의 제어를 위해 퍼지제어의 제약인 멤버쉽 함수, 퍼지규clr을 유전알고리즘으로 조정, 최적화 하는 새로운 제어기를 설계하였다. 사용된 유전알고리즘은 Steady State Genetic 알고리즘과 Adaptive 유전 알고리즘의 합성이다. 제안한 제어기는 Flexible Manipulator의 끝점 무게 0.8kmg, 최대속도 1m/s의 경우, 퍼지제어에 비해 오차가 90.8% 감소하고 신경회로망을 이용한 퍼지제어에 비하여는 31.8% 감소하였으며 진화전략과 퍼지제어합성에 의한 제어기보다는 오차가 31.3% 감소하는 통 제어성능과 그 유용성이 우수함을 확인하였다.

퍼지 모델을 이용한 일별 주가 예측 (Daily Stock Price Prediction Using Fuzzy Model)

  • 황희수
    • 정보처리학회논문지B
    • /
    • 제15B권6호
    • /
    • pp.603-608
    • /
    • 2008
  • 본 논문에서는 주가의 일별 시가, 종가, 최고가, 최저가를 예측하기 위한 퍼지모델을 제안한다. 주가는 시장의 여러 경제 변수에 의존하므로 주가예측 모델의 입력변수를 선택하는 것은 쉽지 않은 일이다. 이와 관련하여 많은 연구가 있지만 정답이 있는 것은 아니다. 본 논문에서는 이를 해결하기 위해 주가 움직임 자체에 주목하는 스틱차트의 기술적 분석에 이용되는 정보를 퍼지규칙의 입력변수로 선택한다. 퍼지규칙은 사다리꼴 멤버쉽함수로 이루어진 전건부와 비선형 수식의 후건부로 구성된다. 최적의 퍼지규칙으로 구성된 퍼지모델을 찾아내기 위해 차분진화가 사용된다. 본 논문에 제안된 방법은 수치 예를 통해 다른 방법과의 비교로 타당성이 검토되며 KOSPI(KOrea composite Stock Price Index) 일별 데이터를 사용, 주가예측 퍼지모델을 구축하고 신경회로망 모델과 비교, 검토된다.

(2D)2 PCA알고리즘을 이용한 최적 RBFNNs 기반 나이트비전 얼굴인식 시뮬레이터 설계 (Design of Optimized RBFNNs based on Night Vision Face Recognition Simulator Using the 2D2 PCA Algorithm)

  • 장병희;김현기;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2014
  • 본 연구에서 $(2D)^2$ PCA 알고리즘을 이용한 최적 RBFNNs 기반 나이트비전 얼굴인식 시뮬레이터을 설계한다. CCD 카메라로 야간에 이미지를 취득할 경우 조도가 낮기 때문에 인식을 수행하기 어려운 수준의 이미지가 취득되는 문제점이 발생한다. 따라서 본 논문에서는 나이트 비전 카메라를 이용하여 야간 얼굴을 취득하였다. 또한 얼굴과 비얼굴 이미지 영역에서 야간 얼굴 이미지를 검출하기 위해 Ada-Boost 알고리즘을 사용한다. 그리고 히스토그램 평활화를 이용하여 이미지의 왜곡 현상을 최소화 한다. 이렇게 얻어진 고차원 이미지를 저차원으로 축소하기 위해 $(2D)^2$ PCA 알고리즘을 사용했다. 다항식 기반 RBFNNs을 이용한 지능형 패턴 분류 모델을 통하여 얼굴인식을 수행 한다. 마지막으로 차분진화 알고리즘을 사용하여 파라미터를 최적화 한다. $(2D)^2$ PCA를 최적 RBFNNs 기반 나이트비전 얼굴인식 시스템의 성능 평가를 위하여 IC&CI Lab data를 사용하고 실제 얼굴 인식 시스템을 설계한다.