• Title/Summary/Keyword: 진폭감쇄율

Search Result 3, Processing Time 0.021 seconds

Scattering of a Kelvin Wave by a Cylindrical Island (원통형 섬에 의한 Kelvin 파의 산란)

  • Lee, Sang-Ho;Kim, Kuh
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.177-185
    • /
    • 1993
  • The theory for long wave scattering (Proudman, 1914: Longuet-Higgins, 1970) is applied to a tidal-frequency Kelvin wave propagating around a small cylindrical island in a shelf sea of uniform depth. The theory includes the effects of bottom friction on wave propagation. The theoretical analysis of the Kelvin wave around the island. this amplitude change results in a uniform amplitude of the total wave along the circumference of the island in an inviscid fluid, and the dynamic cause of this is explained in terms of Coriolis effects. Bottom friction attenuates the amplitude of the total wave from the frontal side of the island to the leeward side, but the amplitude variation along the coast becomes symmetric to the line connecting both idea. The phase of the scattered wave contributes to more rapid travel of the total wave in the front and leeward side than farther offshore. The effects of bottom friction on the wave phase around the island are negligible.

  • PDF

Analysis of PCM Wallboards Design Parameters using Dynamic Energy Simulation (동적 에너지 시뮬레이션을 이용한 PCM보드의 설계변수 분석에 관한 연구)

  • Lee, Jin-Uk;An, Sang-Min;Kim, Taeyeon;Lee, Seung-Bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.97-104
    • /
    • 2012
  • A phase-change material is a substance with a high heat of fusion which, melting and freezing at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid. Therefore, PCMs are classified as latent heat storage (LHS) units. The purpose of this study is to analyze PCM wallboard design parameters using dynamic energy simulation. Among the factors of PCM, melting temperature, latent heat, phase change range, thermal conductivity are very important element to maximize thermal energy storage. In order to analyze these factors, EnergyPlus which is building energy simulation provided by department of energy from the U.S is used. heat balance algorithm of energy simulation is conduction finite difference and enthalpy-temperature function is used for analyzing latent heat of PCM. The results show that in the case of melting temperature, the thermal energy storage could be improved when the melting temperature is equal to indoor surface temperature. It seems that when the phase change range is wide, PCM can store heat at a wide temperature, but the performance of heat storage is languished.

A study on the simplification of HRTF within high frequency region (고역 주파수 영역에서 HRTF의 간략화에 관한 연구)

  • Lee, Chai-Bong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • In this study, we investigated the effect of the simplification for high frequency region in Head-Related Transfer Function(HRTF) on the sound localization. For this purpose, HRTF was measured and analyzed. The result in the HRTF frequency characteristic of the back sound source showed that the decrease revel of high frequency was smaller than that of low frequency region, which means the possibility of simplification in the high frequency region. Simplification was performed by flattening of the high frequency amplitude characteristics with the insertion of the low-pass filter, whose cutoff frequency is given by boundary frequency. Auditory experiments were performed to evaluate the simplified HRTF. The result showed that direction perception was not influenced by the simplification of the frequency characteristics of HRTF for the error of sound localization. The rate of confusion for the front and back was not affected by the simplification of the frequency characteristics over 8kHz of HRTF. Finally, we made it clear that the sound localization was not affected by the simplification of frequency characteristics of HRTF over 8kHz.