• Title/Summary/Keyword: 진원함수

Search Result 31, Processing Time 0.027 seconds

A Study for Earthquake Parameter of Odaesan Earthquake (오대산지진(2007/01/20)의 지진원 특성에 관한 연구)

  • Kim, Jun-Kyoung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.673-680
    • /
    • 2007
  • The seismic source parameters of the Odaesan earthquake on 20 January 2007, including focal depth, focal mechanism, magnitude, and source characteristics, are analysed using seismic moment tensor inversion. The Green's function for different 3 crust models representing the southern Korean Peninsula are used. Final results show that the event, considering 6 seismic moment tensor elements, is caused by the typical strike slip fault with nearly NNE strike. The focal depth is estimated to be about 11km and 6 seismic moment tensor elements with 7.2% CLVD value shows typical double couple seismic source. The consistent characteristics of the strike and epicenter of the event with Odaesan fault imply that Odaesan earthquake is mainly caused by movement of the Odaesan fault.

Generation of Artificial Acceleration-Time Histories for the Dynamic Analysis of Structures in the Korean Peninsula (구조물(構造物)의 동적해석(動的解析)을 위한 한반도(韓半島)의 인공지진파(人工地震波) 작성(作成))

  • Kim, Won Bae;Yu, Chul Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 1990
  • The generation of artificial accelerograms considering the characteristic of earthquakes in the Korean peninsula for a time history analysis of structures is accomplised by the stochastic method. The engineering data such as a representative shape of envelope function and an effective duration are investigated from the instrumental records. The maximum ground acceleration value is based on seismic zoning map which are constructed for the Korean peninsula. The acceleration-time histories are generated for two different types of earthquake motions and two types of soil conditions. In the study, the maximum ground acceleration value of 0.2 g and effective durations of 24 seconds are used. The validity of the artificial accelerograms is obtained by the comparison with the required envelope functions and the design response spectrum.

  • PDF

Development of Attenuation Equations of ground Motions in the Southern Part of the Korean Peninsula (한반도 남부 지역의 지진동 감쇄식 개발)

  • 노명현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.21-28
    • /
    • 1999
  • The objective of the study is to develop attenuation equations of the ground motions in the southern part of the Korean peninsula. The earthquake source characteristics and the medium properties were estimated from available instrumental earthquake records and used as input parameters. The peak ground accelerations(PGA) and pseudo-velocity response spectra(PSV) were simulated by the random vibration theory. The attenuation equations for the PGA and PSV were constructed in terms of local magnitudes and hypocentral distances.

  • PDF

Statistical Characterization of UWB channel in Office Environments (초광대역 통신시스템의 통계학적 채널모델링)

  • Choi Jin-Won;Kang Noh-Gyoung;Kim Jeong-Wook;Kim Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.702-708
    • /
    • 2006
  • 본 논문에는 초광대역 통신시스템을 위한 주파수 영역의 통계학적 채널 모델을 서술하고 있다. 채널 모렐링은 3개의 사무실 환경, 46개의 송, 수신 위치에서 얻어진 23,000개의 채널응답함수로 부터 얻어졌다. 측정실험을 통해 얻어진 데이터를 바탕으로 주파수 변화에 따른 경로감쇄지수 변화에 대해 서술한 후 전파환경과 가시경로의 존재여부에 따른 수신신호의 확률분포모델을 연구하였다. 마지막으로는 수신된 주파수 톤에 해당하는 수신파워의 표준편차와 같은 통계적 특성들을 고찰하였는데, 가시경로가 존재하는 경우에는 송, 수신기 사이의 거리가 멀어지면서 표준편차 값이 커지고 그에 따라 수신 주파수 톤의 파워가 평균 수신파워에서 일정한 범위 안에 들어올 확률이 떨어지는 것을 알 수 있었다.

Application of Moment Tensor Inversion to Small Local Earthquakes in the Korean Peninsula (한반도의 소규모지진 모멘트 텐서 역산의 응용)

  • Kim, So-Gu;Van, Phan Thi Kim;Lee, Seoung-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.123-136
    • /
    • 2001
  • The purpose of application of moment tensor inversion method is to determine source parameters, such as, focal mechanism, seismic moment and source depth. This paper presents results of focal mechanism solutions of 14 recent events with magnitudes ranging from M3.3 to M4.8 by using moment tensor inversion method called TDMT_INV. The strike of faults is in the direction of NE-SW and NW-SE with the movement of strike-slip or strike-slip of minor reverse component. The compressional axis of the stress field is predominantly E-W or ENE-WSW except for some faults, which are distributed at Ryongnam Massif and Wonsan, they have a compressional axis of N-S or NNW-SSE.

  • PDF

Effects of Fault Parameters on the Ground Motion Synthesized by the Stochastic Green Function Method (추계학적 그린함수법으로 합성된 지반운동에 대한 단층 파라미터의 영향)

  • Kim, Jung-Han;Seo, Jeong-Moon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • In this study, the ground motion was synthesized using the finite fault model by the stochastic green function method, and the difference in the ground motions was evaluated by using various values of the source parameters. An earthquake with a moment magnitude of 6.5 was assumed for the example fault model. The distribution of the slip in the fault plane was calculated using the statistical data of the asperity area. The source parameters considered in this study were the location of the hypocenter in the fault plane and the ratio of the rupture to the shear wave velocity, the rise time, the corner frequency of the source spectrum, and a high frequency filter. The values of the parameters related to the stochastic element source model were adjusted for different tectonic regions, and the others were selected for several possible cases. The response spectra were constructed from the synthesized ground motion time history and compared with the different parameter values. The frequency range affected by each parameter and the differences of the spectral accelerations were evaluated.

Tsunami wave Simulation y Sign Method - Its application in the East Sea - (Sign Method를 이용한 쯔나미파의 모의실험 - 동해에서의 적용 -)

  • 정종률;김성대
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.192-201
    • /
    • 1993
  • To reduce tsunami hazards, it is necessary to develope the methods which can simulate tsunami wave signals of coastal areas. In the present paper, it is attempted t use Sign Method for analyzing and simulating recorded tsunami signals. A tsunami record Y(t) can be represented as the convolution integral of a source evolution function E(t') and a wave propagation function K(t-t') Y(t)=.int. E(t')K(t-t')dt' A source function contains the peculiarities of a tsunami generator. A wave function is a kind of transfer function which contains the characteristics of a wave propagation path. The source functions and the wave function and the wave functions of 9 Korean coast points and 6 Japan coast points are estimated, and the tsunami wave signals are simulated by the convolution integrals of the source functions and the wave functions. According to the results of analysis, the Sign Method is an effective method for simulating tsunami wave signals of Korean coast points which are located far from tsunami source areas. Furthermore, if the source function of a neighboring point ad the wave function of an another tsunami are given, unrecorded tsunami wave also can be estimated.

  • PDF

Seismic Risk Map of Korea Obtained by Using South and North Korea Earthquake Catalogues (남.북한 지진 목록을 이용한 한국지진위험도)

  • 김소구;이승규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.13-34
    • /
    • 2000
  • 본 연구에서는 서기 2년부터 1977년까지 남.북한 역사지진(A.D 2-1904)과 초기 계기 지진(1905-1977) 목록을 이용하여 남한 지진 규모로 재조정된 지진목록을 작성하였다 역사 지진은 과거의 협소한 인구분포로 인해 지진 기록의 누락이 많앗다 지진 위험도를 작성하기 위해 지진 발생분포와 지체구조의 특성을 고려하여 4개의 지진구(seismic province)를 설정하였다. 각 지진구에서 최대 잠재 지진결정은 Gumbel의 최대치 이론을 이용하였다 제 1수정 점근 함수 분포에서 유한 상한 값(finte upper boundary) 의 존재는 각 지진구에서 발생할 최대 잠재 지진의 진원(source)이 유한하다는 사실과 잘 일치한다. 따라서 이를 근거로 각 지진구에서 10년 , 20년, 30년, 50년 이내에 2% 5% 10% 초과 확률을 갖는 최대 규모지진을 추정하였다 또한 각 지진구에서 유한 지진원은 과거에 발생했던 큰 규모의 특정 지진과 지진 지체구조 정보에 근거하여 결정하였다. 연구결과 조선시대(1392-1904) 의 지진위험도에서는 경주 울산지역과 서울과 평양지역을 따라 높은지반 가속도 값을 보이며 경주지역에서 0.24g의 최대 지반 가속도 값으로 나타났다 계기 지진목록(1905-1998)을 이용한 한반도의 지진 위험도에서는 경주, 울산, 대구 지역에서 0.10-0.12g 의 최대 지반가속도 값을 보였다. 그리고 계기 지진 목록(1905-1998) 만을 이용하여 작성한 서울.경기 지역의 지진 위험도에서는 김포, 잠실 , 성남 지역의 한강을 따라 분포하는 충적층과 강남지역의 지반 운동이 한강 이북의 대보 화강암 지역에 비해 비교적 높은 0.09-0.10g의 지반 가속도를 보이는 것이 특징이다.

  • PDF

Microseismic Monitoring Using Seismic Mini-Array (소규모 배열식 지진관측소를 이용한 미소지진 관측)

  • Sheen, Dong-Hoon;Cho, Chang Soo;Lee, Hee Il
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • It was introduced a seismic mini-array that could monitor microseismicity efficiently and analyzed seismic data obtained from the mini-array that was operated from December 19, 2012 to January 9, 2013. The mini-array consisted of a six channel data logger, a central 3 components seismometer, and a tripartite array of vertical sensors centered around the 3 components seismometer as an equilateral triangle with about 100 m aperture. All seismometers that had the same instrument response were connected a 6 channel data logger, which was set to record seismograms at a sampling rate of 200 sps. During the three weeks of campaign, a total of 16 microearthquakes were detected. Using time differences of P wave arrivals from the vertical components, S-P time from 3 components seismometers, and back azimuth from the seismic array analysis, it was possible to locate the hypocenter of the microearthquake even with one seismic miniarray. The epicenters of two nearest microearthquakes were a quarry site located 1.3 km from the mini-array. The records of quarry blasting confirmed the our analysis.

Fault rupture directivity of Odaesan Earthquake (M=4.8, '07. 1. 20) (오대산지진(M=4.8, '07. 1. 20)의 단층파열방향성)

  • Yun, Kwan-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Fault rupture directivity of the Odaesan earthquake, which was inferred to be the main cause of the high PGAvalue (> 0.1 g) unusually observed at the near-source region, was analyzed by using the data from the nearby (R < 100 km) dense seismic stations. The Boatwright's method (2007) was adopted for this purpose in which the azimuth and takeoff angle of the unilateral rupture directivity function could be estimated based on the relative peak ground-motions of seismic stations resulting from the nature of the rupture directivity. In this study, the approximate values of the relative peak ground-motions was derived from the difference between the log residuals of the point-source spectral model (Boore, 2003) for the main and secondary events based on the Random Vibration Theory. In this derivation, the spectral difference for a frequency range between the source corner frequencies of main and secondary events was considered to reflect only the effect of the fault directivity. The inversion result of the model parameters for the fault directivity function showed that the fault-plane of NWW-SEE direction dipping steeply to the North with high rupture velocity near upward in SE direction is responsible for the observed high level of ground-motion at the near-source region.