• Title/Summary/Keyword: 진동 토크

Search Result 196, Processing Time 0.029 seconds

A Study on the System Parameters to Reduce the Idle Gear Rattle (기어 래틀 저감을 위한 시스템 파라미터 연구)

  • 안병민;장일도;최은오;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.88-96
    • /
    • 1998
  • The rattle noise is the most significant in many kinds of manual gearbox nioses, which is generated at the idle stage of the engine operation. The main torsional vibrat- ion source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration. Many researchers reported the clutch torsional characteristic optimization method to reduce the idle gear rattle but only few of them give sufficient consideration to the system parameters like gear backlash, drag torque, system inertia, inertia distribution, engine torque fluctuation, idle engine rotation speed, and accessory load. In this paper, influence rate of system parameters on the gear rattle is presented and counterplans like backlash reduction, drag torque increase, inertia addition, inertia distribution modification and engine torque characteristic control are suggested.

  • PDF

Sensitivity Analysis of Design Parameters for Reduction of Cogging Torque in Brushless DC Motors used for Automobile Part (자동차 부품용 BLDC 모터 내의 코깅 토크 저감을 위한 설계 변수의 민감도 해석)

  • 황상문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.235-243
    • /
    • 1998
  • For motor operation at low speeds and loads, torque pulsation by the cogging torque is often a source of vibration and control difficulty. In this paper, the magnetic field of a motor is calculated by finite element method. The periodic cogging torque is determined using Maxwell stress method and time stepping method, and then decomposed using fourier series expansion, The purpose of this paper is to characterize design parameters on the cogging torque and to design a permanent magnet motor with a cogging torque less vulnerable to vibration, without sacrificing the motor performance. The design parameters include stator slot width, permanent magnet slot width, airgap length and magnetization direction. A new design with a less populated frequency spectrum of the cogging torque is proposed after characterizing individual effect of design parameters. Magnet pole edge shaping, by gradually increasing the cogging torque with reduced higher harmonics.

  • PDF

A study on BLDC motor for bus cooling fan system (상용차용 쿨링팬 구동 전동기의 설계 및 특성분석)

  • Seo, Jungmoo;Kim, Youngkyun;Kim, JooHan;Gu, Bongwan;Jung, Insoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.215-215
    • /
    • 2011
  • 본 논문은 상용차용 전동 쿨링팬 모듈의 개발을 위한 5kW급 브러시리스 DC 전동기에 관하여 기술한다. 개발 대상전동기는 정격 3,000rpm의 회전속도를 목표로, 기존 팬 쉬라우드에 장착 가능한 박형으로 설계되며, 코깅토크 저감을 위한 회전자와 고정자 형상 최적화를 수행하여, 구동시 소음과 진동을 감소시키고자 하였다. 전동기를 제작하여 입출력 특성을 분석하고, 최종적으로 기 개발된 팬 블레이드와 결합하여, 쿨링팬 시스템의 유량 및 유압 특성시험을 진행하였다.

  • PDF

Research on the Mechanism of Surface Electromagnetic Force Production on IPMSM (IPMSM 표면 전자기력 발생 매커니즘에 관한 연구)

  • Park, Gyeong-Jae;Lee, Dongsu;Kim, Yong-Jae;Moon, Jae-Won;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.724-725
    • /
    • 2015
  • 본 논문에서는 모터의 방사계 소음 진동에 영향을 미치는 표면전자기력의 발생 매커니즘을 확인하고자 한다. 고정자 표면에서 발생하는 전자기력 가운데 토크에 기여하지 않는 성분을 구분하기 위해 전자리겨 성분을 Radial과 Tangential방향으로 나눈다. 이 중 토크에 기여하지 않는 Radial방향의 힘을 발생시키는 Tangential Flux Density성분의 분포를 확인하고, 자속 포화도 분포와 어떠한 관계가 있는지 확인한다. 모터의 자속밀도 및 전자기력에 대한 계산은 유한요소해석을 기반으로 한 수치 해석기법을 통해 수행하였다.

  • PDF

A study on characteristics according to the parameter variation for hybrid shaft design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Dong-Pyo;Kim, Hyun-Sik;Hong, Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.99-104
    • /
    • 2008
  • The Carbon fiber epoxy composite material and aluminum have many advantages about higher specific stiffness and good fatigue characteristics. basically, the propeller shaft of automobile must satisfy high natural frequency more than 9,200 rpm to satisfy high number of rotation and high torsion torque more than 2,700Nm. In these reason, studied natural frequency and torsion torque characteristics of shaft according to parameter variations with the outdiameter and thickness. From the torsion tester and natural frequency experiments FE analyses was compared vibration and torque characteristics of hybrid shaft Designed hybrid shaft was experimented through FFT analyzer and torsion tester each and satisfied that hybrid shaft reverence 60mm and thickness 5mm by a these experiment is most suitable. Therefore, that can manufacture existent steel two piece type propeller shaft to one piece type hybrid shaft.

  • PDF

An Experimental Study of Engine Mount Optimization to Improve Noise and Vibration Quality of F.R. Vehicle (후륜구동 차량의 소음 진동 성능향상을 위한 엔진마운트 최적설계에 관한 실험적 연구)

  • 이준용;김찬묵
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.681-688
    • /
    • 1997
  • The purpose of engine mount system is to reduce the noise and vibration caused by engine vibration, and to decouple the roll and bounce mode at idle. To reduce the noise and vibration level in a vehicle, it is important to make the design optimization of engine mount system that consider the moment of inertia and inclination of mount rubber. As a result, according to the definition of Torque Roll Axis (TRA), the vibration axis at idle must be on the TRA or very close to it. In this paper, we studied the effect of the design optimization of engine mount system. And we have achieved good improvements in noise and vibration quality of F.R. vehicle.

  • PDF

Vibration Analysis of Rotor Systems Using Finite Dynamic Elements (동적 유한요소에 의한 회전축 계의 진동 해석)

  • 양보석;황형섭
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.467-475
    • /
    • 1997
  • A rotor-bearing system has been investigated, including internal damping and axial torque using finite dynamic elements. A procedure is presented for dynamic modeling of rotor-bearing system which consist of finite dynamic shaft elements, rigid disk, and bearing and seal. A finite dynamic element model including the effects of rotatory inertia, gyroscopic moments, axial force, and axial torque is developed using the frequency dependent shape function. The natural whirl speeds, stability, and unbalance response of rotor system are calculated on several cases and compared with the conventional finite elements.

  • PDF

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

A Study on the Application of Carbon Fiber Reinforced Plastics to PTO Shafts for Aircrafts (탄소섬유 강화 복합재료의 항공기용 PTO 샤프트 적용에 관한 연구)

  • Jeong, Kwang Il;Kim, Wonki;Jeong, Jae-Moon;Oh, Jaehyung;Bang, Yun Hyuk;Kim, Seong Su
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.380-386
    • /
    • 2021
  • This paper aims to improve the critical speed of power-take-off (PTO) shafts by using carbon fiber reinforced plastics (CFRPs). The PTO shaft was designed with titanium-CFRPs hybrid structure in order to compensate the low shear strength of CFRPs. Based on the requirements for PTO shafts, the dimensions of PTO shafts were determined through a parametric study. To evaluate the performance of the PTO shaft, a vibration test, a static torsion test, and a torsion durability test were performed. In the vibration test, the critical speed of PTO shafts was 20570 rpm, which was 7.5% higher than that of titanium shafts. Additionally, it was confirmed that the maximum allowable torque of the PTO shaft was 2300 N·m. Finally, under repeated load in the range of 11.3 to 113 N·m, the fatigue failure in the PTO shaft did not occur up to 106 cycles.

Vibration Analysis of a Turbo Compressor Test Rig (터보 압축기 성능시험을 위한 리그 진동 분석)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok;Lee, Jin-Kun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.98-107
    • /
    • 2009
  • Vibration analysis of a turbo compressor test rig was carried out in order to investigate the vibrational characteristics of the compressor facility in KARI before conducting the compressor performance test of 5MW-class gas turbine engine for generation. The overall compressor test facility consists largely of inlet and exit ducts, a test section and a driving part. Vibration was measured with accelerometers at the test section and the driving part, especially at a main housing, a collector, a bearing carrier, a torquemeter, a gearbox, and an electric motor. Gap sensors are also installed to measure the rotordynamic characteristics of compressor shaft.

  • PDF