• Title/Summary/Keyword: 진동 시험

Search Result 1,706, Processing Time 0.023 seconds

The Effect of Natural Mineral Complex Supplementation on Production, Egg Quality and Blood Characteristic in Laying Hens (사료 내 천연 복합 미네랄 제제의 첨가가 산란계의 생산성, 계란 품질 및 혈액 성상에 미치는 영향)

  • Yoo, J.S.;Kim, J.D.;Cho, J.H.;Chen, Y.J.;Kim, H.J.;Kang, D.K.;Min, B.J.;Kim, I.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.3
    • /
    • pp.189-194
    • /
    • 2006
  • This study was conducted to investigate the effects of natural mineral complex supplementation on egg production and characteristic in laying hens. A total of two hundred forty laying hens were randomly allocated into four treatments with ten replications for six weeks. Dietary treatments included 1) CON (control, basal diet) 2) M0.5 (basal diet + 3% chitosan + 0.5% natural mineral complex), 3) M1.0 (basal diet + 3% chitosan + 1.0% natural mineral complek) and 4) M1.5 (basal diet + 3% chitosan + 1.5% natural mineral complex). In the egg production, the M1.5 treatment was significantly higher than other treatments(P<0.05). However, egg weight was significantly higher in M0.5 treatment than CON and M1.0 treatments(P<0.05). Egg shell breaking strength was higher in M1.5 treatment than M0.5 treatment. Egg shell thickness was the highest in M1.5 treatment compared to other treatments(P<0.05). The hens 134 M0.5 diet were improved egg yolk color compared to those fed other diets(P<0.05). The Haugh unit, CON and M1.0 treatments showed significantly different results compared to those of M1.5 treatment(P<0.05). The M1.5 treatment had higher Ca and Fe concentration in blood and higher K concentration in yolk than CON(P<0.05). In conclusion, supplementation of natural mineral complex in laying hen diets influenced on egg production, egg shell qualify and mineral concentration in blood and yolk.

Acquisition of High Resolution Images and its Application using Synchrotron Radiation Imaging System (방사광 X-선을 이용한 고해상도 영상획득과 응용)

  • 홍순일;김희중;정해조;홍진오;정하규;김동욱;제정호;김보라;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • Synchrotron radiation (SR) has several advantages over convetional x-rays, including its phase, collimation, and high flux. A synchrotron radiation beamline 5C1 at Pohang Light Source (PLS) was recently built for imaging applications. We have shown that a SR imaging system is useful in imaging microscopic structures. SR with broad-band energy spectrum were adjusted to an object by Si wafers and their energy were approximately ranging from 6 keV to 30 keV. SR were passed through an object and finally transformed into visible lights by CdWO$_4$ scintillator screen. The visible lights which were reflected at an angle of 90 degrees by gold plated mirror were detected by a CCD camera and the image data were acquired using image acquisition system. A high-resolution phantom, capacitor, adult tooth, child tooth, cancerous breast tissue, and mouse lumbar vertebra were imaged with SR imaging system. The Objects were rotated within the field of view of the CCD detector, and their projection image data were obtained at 250 steps over 180 degrees rotation. Image reconstructions were carried out in a PC by using IDLTM(Research systems, Inc., US) program. The spatial resolution of the images acquired by the SR imaging system was measured with a high-resolution chart manufactured for several micrometer resolution. The specimens were also imaged with conventional x-ray radiography system to compare the image quality of radiography obtained with the SR imaging system. The results showed more structural details and high contrast images with SR imaging system than conventional x-ray radiography system. The SR imaging system may have a potential for imaging in biological researches, material applications, and clinical radiography.

  • PDF

A Study on Balanced -type Oseillating Mole-Drainer(III)-Model Test for Draft Force, Torque, Power and Moment (평행식 진동탄환 암거 천공기의 연구(III)-견인력, 토크, 동력 및 모멘크에 관한 모형시험-)

  • 김용환
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1976
  • This paper is the third one of the study on balanced type oscillating mole-drainer, the first one was presented in No 9. Gyeongsang College Report and the second one in Vol. 17, No.4 of the KSAE. In the first part of this study, the characteristics of traction forces between the nonoscillating earth working equipments and oscillating ones was compared. A model of the balanced type oscillating mole-drainer, which composed of a mechanism that may reduce the machine vibration, was designed following the dimensional analysis and similitude technique. The model test was carried out to clarify the balancing mechanism of the oscillating parts and other parts of the machine. In the light of the results from the model tests, a prototype machine was made for experimental purpose. Results from the field test by a reported in the near future. In the second report, the model tests were carried out under the same soil conditions, i.e, . oscillating frequency, running velocity, and oscillating amplitude, etc. It was clear that use of balanced type oscillating model could substantially reduce the vibration of the whole system of the machine, when compared with the nonoscillating type model. In this paper(the third report), results of investigation on the traction force, power requirement, and moment. etc, is presented. Analysis of variance technique was used for analyzing the effect of the frequency, amplitude, and running velocity on the draft force, torque, power requirements, and moments. The results obtained from the model tests are as follows, 1) By practicing a balanced-type oscillating mole-drainer, it was possible to reduce the traction resistance by 55.1-61. 2 percent of traction resistance, however, was 1.75 - 1.95 times greater than the value of resistance which was induced by use of a mole-drainer with single bullet. The resistance of rear shank against soil was considered as a main causing factor of the above results. 2) As the oscillation frequency was increased, the traction resistance was decreased. Considering on the effect of oscillation the greater the amplitude, and the slower the running velocity was, the greater the reduction ratio of traction resistance was. 3) The ratio of the traction resistance of oscillating mole-drainer to that of non-oscillating one could be represented as a function of dimensionless variable (V/$Af$). The results from the tests were well agreed with the reported results from the experim ents on oscillation plow or hoe. 4) By taking a lower value of (V/$Af$), reducing the traction resistance was possible. This fact meant, however, that the efficiency of mole drain practice would be lower. 5) It was experimentally confirmed under the same condition of soil that the variable (R/$rD1^3$) could be represented as a function of a variable($V^2/gD$) when a non\ulcornerocillating mole-drainer was used. 6) When a oscillating mole-drainer was used, the variable(R/$rD_1^{3}$) could be represented as a function of two variables ($v^2/gD_1$) and (V^2/gD_1$). 7) The torque was not affected by a change of frequency. However, a relation of proportionality existed between torque and amplitude, running velocity, and ratio of bullet diameter. When a balanced type oscillating mole-drainer with two bullets was used, torque was increased by 52.8-78. 4 percent and total power requirement was also increased. 8) Total power requirement was increased linearly in accordance with the increasing frequency, 41.96 percent of total power was used for oscillating action. The magnitude of total power requirement was 1. 8-9. 4 times greater than that of a non-oscillating mechanism. In the view point of power requirement, it was not advisable to increase the frequency, amplitude, running velocity, and ratio of bullet diameter at the same time. 9) Only the positive moment occured in the rear shank. Change of the diameter of a rear bullet, could not affect the balancing against the soil resistance. It was necessary for rear bullet to have a large resistance against soil only when the rear bullet was in backward motion. 10) Within an extent of the experimental base, optimum limits for several design factors were A=0.5cm, $f$=22.5Hz, V=O. 05m/sec, and $\lambda$=1.0 By adapting these values traction resistance was reduced by 40 percent and vibration acceleration wa s reduced by 60 percent. Even though the total , power requirements for operating a balanced type oscillation mechanism was greater ~than that of non-oscillating one, using a oscillating mechanism would be more effective. Because a balanced type oscillating mechanism is used, tractive resistance will be reduced and then the lighter . tractive equipment could be used.

  • PDF

A Study on the Field Data Applicability of Seismic Data Processing using Open-source Software (Madagascar) (오픈-소스 자료처리 기술개발 소프트웨어(Madagascar)를 이용한 탄성파 현장자료 전산처리 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • We performed the seismic field data processing using an open-source software (Madagascar) to verify if it is applicable to processing of field data, which has low signal-to-noise ratio and high uncertainties in velocities. The Madagascar, based on Python, is usually supposed to be better in the development of processing technologies due to its capabilities of multidimensional data analysis and reproducibility. However, this open-source software has not been widely used so far for field data processing because of complicated interfaces and data structure system. To verify the effectiveness of the Madagascar software on field data, we applied it to a typical seismic data processing flow including data loading, geometry build-up, F-K filter, predictive deconvolution, velocity analysis, normal moveout correction, stack, and migration. The field data for the test were acquired in Gunsan Basin, Yellow Sea using a streamer consisting of 480 channels and 4 arrays of air-guns. The results at all processing step are compared with those processed with Landmark's ProMAX (SeisSpace R5000) which is a commercial processing software. Madagascar shows relatively high efficiencies in data IO and management as well as reproducibility. Additionally, it shows quick and exact calculations in some automated procedures such as stacking velocity analysis. There were no remarkable differences in the results after applying the signal enhancement flows of both software. For the deeper part of the substructure image, however, the commercial software shows better results than the open-source software. This is simply because the commercial software has various flows for de-multiple and provides interactive processing environments for delicate processing works compared to Madagascar. Considering that many researchers around the world are developing various data processing algorithms for Madagascar, we can expect that the open-source software such as Madagascar can be widely used for commercial-level processing with the strength of expandability, cost effectiveness and reproducibility.

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.