• Title/Summary/Keyword: 진동사용성

Search Result 1,388, Processing Time 0.027 seconds

Pseudo-DC Resistivity Survey for Site Investigation at Urban Areas with Ambient Electrical Noises (전기잡음 간섭이 있는 도심지 지역 탐사를 위한 유사직류 전기비저항 기법)

  • Joh, Sung-Ho;Kim, Bong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.37-44
    • /
    • 2010
  • Recently, urban retrofit and extension, development of new buildings and facilities, and construction of underground structures like subway tunnels in urban areas give rise to significance of site investigation at urban areas. However, ambient electric noises, traffic vibrations, embedded objects work as obstacles to high-quality and accuracy in site investigation at urban areas. In this paper, a new technique called the pseudo-DC resistivity survey (in brief, PDC-R) was proposed to minimize the adverse effect of ambient electrical noises in resistivity survey. PDC-R technique utilizes an AC current with frequency range of 0.1 to 1.0 Hz rather than DC current, which is used for conventional resistivity survey. The motivation of using low-frequency AC current is to avoid 60-Hz components or its multiples in the resistivity survey which ambient noises are mostly composed of. The implementation of PDC-R technique also included the parametric study on skin effect, frequency effect and current-level effect, which led to the determination of optimal values of frequency and current level for PDC-R survey. The reliability and feasibility of PDC-R technique was verified through field tests, accompanied by the comparison with DC resistivity survey and CapSASW tests.

Environmental Pollution in Korea and Its Control (우리나라의 환경오염 현황과 그 대책)

  • 윤명조
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.5-6
    • /
    • 1972
  • Noise and air pollution, which accompany the development of industry and the increase of population, contribute to the deterioration of urban environment. The air pollution level of Seoul has gradually increased and the city residents are suffering from a high pollution of noise. If no measures were taken against pollution, the amount of emission of pollutant into air would be 36.7 thousand tons per year per square kilometer in 1975, three times more than that of 1970, and it would be the same level as that of United States in 1968. The main sources of air pollution in Seoul are the exhaust has from vehicles and the combustion of bunker-C oil for heating purpose. Thus, it is urgent that an exhaust gas cleaner should be instaled to every car and the fuel substituted by less sulfur-contained-oil to prevent the pollution. Transportation noise (vehicular noise and train noise) is the main component of urban noise problem. The average noise level in downtown area is about 75㏈ with maximum of 85㏈ and the vehicular homing was checked 100㏈ up and down. Therefore, the reduction of the number of bus-stop the strict regulation of homing in downtown area and a better maintenance of car should be an effective measures against noise pollution in urban areas. Within the distance of 200 metres from railroad, the train noise exceeds the limit specified by the pollution control law in Korea. Especially, the level of noise and steam-whistle of train as measured by the ISO evaluation can adversely affect the community activities of residents. To prevent environmental destruction, many developed countries have taken more positive action against worsening pollution and such an action is now urgently required in this country.

  • PDF

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

Clinical Study on Laryngo - Microscopic Surgery For Vocal Nodules and Polyps (후두결절 및 폴립의 후두미세 수술에 관한 임상연구)

  • 문영일
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1983.05a
    • /
    • pp.11.2-11
    • /
    • 1983
  • Vocal nodules and polyps are much more frequent in singers, public speakers, teachers and actors. Voice trauma and voice misuse, at times associated with mild inflammatory reaction, appear to be important in their etiology. It is generally agreed that vocal cord nodules and polyps are inflammatory in nature and they arise in the subepithelial layer of loose connective tissue of the vocal cord. Since the junction of anterior and middle thirds of the membranous cord and has the greatest amplitude of vibration. This is the site of predilection for vocal cord nodules. The author performed laryngomicrosurgery for 70 cases of vocal nodules and polyps at Ewha Womans University Hospital during the period of 5 years. The result obtained were as follows ; 1) Surgical excision is not necessarily the best approach because vocal nodules in the early stages will resolve with the simplest voice therapy. 2) In children, surgery is rarely indicated because most nodules in children regress during adolescence. 3) For patients who use their voices professionally, voice therapy is indicated for three months. 4) If after three month of conservative treatment the cord lesion does not improve and the patient it still dissatisfied with his voice, laryngomicrosurgery can then be considered. 5) The small cuffed endotracheal tube in the interarytenoid space helps to keep the cords immobile and in an abducted position. 6) Removal of the nodule shoule be started by gentle retraction posteriorly and as soon as a tear appears anterior to the nodule. 7) On occasion it is preferable to start the dissection with a siccle knife while the nodule is held on the stretch. 8) Voice rest should be maintained for a week following which the free edges of the cords are usually healed.

  • PDF

SLUMPING TENDENCY AND RHEOLOGICAL PROPERTY OF FLOWABLE COMPOSITES (Flowable 복합레진의 slumping 경향과 유변학적 성질)

  • Lee, In-Bog;Min, Sun-Hong;Kim, Sun-Young;Cho, Byung-Hoon;Back, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • The aim of this study was to develop a method for measuring the slumping resistance of flowable resin composites and to evaluate the efficacy using rheological methodology. Five commercial flowable composites (Aelitefil flow:AF, Filtek flow:FF, DenFil flow:DF, Tetric flow:TF and Revolution:RV) were used. Same volume of composites in a syringe was extruded on a glass slide using a custom-made loading device. The resin composites were allowed to slump for 10 seconds at $25^{\circ}C$ and light cured. The aspect ratio (height/diameter) of cone or dome shaped specimen was measured for estimating the slumping tendency of composites. The complex viscosity of each composite was measured by a dynamic oscillatory shear test as a function of angular frequency using a rheometer. To compare the slumping tendency of composites, one way-ANOVA and Turkey's post hoc test was performed for the aspect ratio at 95% confidence level. Regression analysis was performed to investigate the relationship between the complex viscosity and the aspect ratio. The results were as follows. 1. Slumping tendency based on the aspect ratio varied among the five materials (AF

Dynamic Characteristics of Liquidity Filling Materials Mixed with Reclaimed Ash (매립석탄회를 혼합한 유동성 충진재의 동적거동특성)

  • Chae, Deokho;Kim, Kyoungo;Shin, Hyunyoung;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2014
  • Recently, there have been various lifeline installations constructed in the underground space of urban area due to the effective use of land. For newly installed lifelines or the management of the installed lifelines, many construction activities of excavation and backfilling are observed. Around these area, there are possibilities of collapse or excessive settlement due to the leaking of the pipe or unsatisfactory compaction of backfill material. Besides, construction costs can be saved since the on-site soils are used. The application of this liquidity filling material is not only to the lifeline installation but also to underpin the foundation under the vibrating machinery. On the evaluation of the applicability of this method to this circumstance, the strength should be investigated against the static load from the machine load as well as the vibration load from the activation of the machine. In this study, the applicability of the liquidity fill material on the foundation under the vibrating machinery is assessed via uniaxial compression and resonant column tests. The liquidity filling material consisting of the on-site soils with loess and kaolinite are tested to investigate the static and dynamic characteristics. Furthermore, the applicability of the reclaimed ash categorized as an industrial waste is evaluated for the recycle of the waste to the construction materials. The experimental results show that the shear modulus and 7 day uniaxial strength of the liquidity filling material mixed with reclaimed ash show higher than those with the on-site soils. However, the damping ratio does not show any tendency on the mixed materials.

Single Degree of Freedom Hybrid Dynamic Test with Steel Frame Structure (강 뼈대 구조물의 단자유도 하이브리드 동적 실험)

  • Kim, Se-Hoon;Na, Ok-Pin;Kim, Sung-Il;Lee, Jae-Jin;Kang, Dae-Hung
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.413-421
    • /
    • 2012
  • The purpose of this study is to evaluate the structural dynamic behavior under hybrid control system. The hybrid test is to consider the interaction between the numerical and physical models. In this paper, single degree of freedom hybrid test was performed with one-bay, two-story steel frame structure. One column at the first floor was selected as a physical substructure and one actuator was used for applying the displacement load in horizontal direction. El Centro as earthquake waves was inputted and OpenSees was employed as the numerical analysis program for the hybrid real-time simulation. As a result, the total time of the hybrid test was about 9.6% of actual measured seismic period. The experimental results agreed well with the numerical one in terms of the maximum displacement. In nonlinear analysis, however, material nonlinearity made a difference of residual strain. Therefore, this hybrid dynamic test can be used to predict the structural dynamic performance more effectively than shaking table test, because of the spatial and economic limitations.

Development of Surface Pavement Materials for Environment-Friendly Farm Road (환경친화형 경작로를 위한 표층포장재료의 개발)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.2
    • /
    • pp.105-114
    • /
    • 2004
  • This study was performed to examine the physical and mechanical properties of eco-concrete using soil, natural coarse aggregate, soil compound and polypropylen fiber. The mass loss ratio was decreased with increasing the content of coarse aggregate and soil compound. The compressive strength, flexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity were increased with increasing the content of coarse aggregate, soil compound and polypropylene fiber. The compressive and flexural strengths were showed in 8.07 MPa and 2.641 MPa at the curing age 28 days, respectively. The coefficient of permeability was decreased with increasing the content of coarse aggregate and soil compound, but it was increased with increasing the content of polypropylene fiber. The lowest coefficent of permeability was showed in $5.066{\times}10^{-9}cm/s$.

  • PDF

Effect of the Compatibilizer on Physical Properties of Polypropylene (PP)/Bamboo Fiber (BF) Composites (폴리프로필렌/대나무 섬유 복합체의 물성에 대한 상용화제의 영향)

  • Lee, Jong Won;Ku, Sun Gyo;Lee, Beom Hee;Lee, Ki-Woong;Kim, Cheol Woo;Kim, Ki Sung;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.615-620
    • /
    • 2015
  • Polypropylene (PP)/bamboo fiber (BF) composites were fabricated by twin screw extruder in order to investigate effects of the compatibilizer on physical properties of PP/BF composites. The content of BF changed from 10 to 25 wt% and that of the compatibilizer was fixed at 3 wt%. Maleic anhydride grafted PP (PP-g-MAH) was used to increase the compatibility between PP and BF as a compatibilizer. Chemical structures of the composites were confirmed by the existence of carbonyl group (C=O) stretching peak at $1,700cm^{-1}$ in FT-IR spectrum. Considering the degradation and mechanical properties, the optimum extrusion conditions were selected to be $210^{\circ}C$ and 100 rpm, respectively. There was no distinct changes in melting temperature of the composites, but the crystallization temperature increased by $10-20^{\circ}C$ owing to the heterogeneous nuclei of BF. It was checked that the optimum BF content was in the range of 15-20 wt% from the results of tensile and flexural properties of the composites. The effect of the compatibilizer on mechanical properties was confirmed by SEM images of fractured surface and contact angles.

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.