• Title/Summary/Keyword: 진단 성능

Search Result 2,078, Processing Time 0.029 seconds

Fault Diagnosis Using t/k-Diagnosable System in Hypercube Networks (t/k-시스템을 이용한 하이퍼큐브 네트워크의 결함 진단)

  • Kim, Jang-Hwan;Rhee, Chung-Sei
    • Convergence Security Journal
    • /
    • v.6 no.2
    • /
    • pp.81-89
    • /
    • 2006
  • System level diagnosis algorithms use the properties of t-diagnosable system where the maximum number of the faults does not exceed t. The existing diagnosis algorithms have limit when dealing with large fault sets in large multiprocessor systems. Somani and Peleg proposed t/k-diagnosable system to diagnose more faults than t (dimension) by allowing upper bounded few number of units to be diagnosed incorrectly. In this paper, we propose hypercube diagnosis algorithm using t/k-diagnosable system. When the number of faults exceeds t, we allow k faults to be diagnosed incorrectly. Simulation shows that the performance of the proposed algorithm is better than Feng's HADA algorithm. The proposed algorithm also gives similar performance compared to HYP-DIAG algorithm.

  • PDF

Harmonic Ultrasound Images and Conventional Ultrasound for Focal Hepatic Lesions: Comparison of Classification Performance by Computer-aided Diagnosis System (국소간병변의 하모닉 초음파와 고식적 초음파영상: 컴퓨터진단시스템에 의한 분류성능 비교)

  • Lee, Jae Young;Jo, In A;Lee, Sihyoung;Kim, Kyung Won;Ro, Yong Man
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.672-675
    • /
    • 2010
  • 초음파 영상은 다른 의료 진단 방법에 비해 상대적으로 비용이 적게 들고 데이터 획득이 용이하기 때문에 널리 이용되고 있다. 초음파 영상은 획득 방법에 따라 화질이 차이가 난다. 고식적 초음파 영상에 비해 두 배의 주파수를 사용하는 하모닉 영상은 대조도나 해상도가 향상되고, 영상 내 잡음이 감소한다. 그래서 초음파 영상을 이용한 진단 과정에서 병변의 특징을 육안으로 정확하게 관찰할 수 있고, 이를 통해서 진단 결과의 정확성이 향상된다. 본 논문에서는 초음파 영상의 획득 방법의 차이에 따른 진단 성능의 차이를 컴퓨터를 이용한 병변 분류 성능을 통해서 비교했다. 이를 위해서 초음파를 통해서 획득한 영상에서 병변의 형태 및 질감 특징을 추출하고, 이를 바탕으로 병변을 분류하는 시스템 구성하였다. 실험을 통해서 하모닉 초음파 영상을 이용한 컴퓨터 기반 분류 방법이 고식적 초음파를 이용한 방법에 비해서 6% 정확성 향상이 있는 것을 확인하였다.

Development of a model for early detection of Parkinson's disease using diffusion tensor imaging and cerebrospinal fluid (확산 텐서 영상과 뇌척수액을 이용한 파킨슨병의 조기 진단 모델 개발)

  • Kang, Shintae;Lee, Wook;Park, Byungkyu;Han, Kyungsook
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.753-756
    • /
    • 2014
  • 파킨슨병은 도파민계 신경이 파괴되는 질병으로 알츠하이머병과 함께 대표적인 퇴행성 뇌 질환으로 병의 진행을 완화시킬 수 있는 치료법이 존재하기 때문에 병의 진단이 굉장히 중요하다. 파킨슨병을 진단하기 위한 과거의 연구는 대부분 단일 생체지표를 이용하는 것이었지만 이러한 방법에는 한계성이 존재한다. 따라서 본 연구에서는 생화학적 생체지표인 뇌척수액 내의 ${\alpha}-synuclein$ 단백질 수치와 영상학적 생체지표인 확산 텐서 영상의 여러 모수들을 결합한 융합 생체지표를 특징으로 사용하는 파킨슨병 진단 모델을 개발하고 성능을 평가하였다. 10-fold cross validation 에서 모든 성능지표에 대해 최고 100%를 보였으며, cross validation 의 과적합을 감안하더라도 파킨슨병의 조기진단에 유용하게 사용될 수 있는 가능성을 제시하였다.

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho;Lee Seoung-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.213-217
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). For teaming the NN, a BPN with one hidden, one input and one output layer was used. The input layer had seven neurons of variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer used 6 neurons of degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network teaming and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV(Unmanned Aerial Vehicle) which is being developed by KARI (Korea Aerospace Research Institute). For teeming the NN(Neural Network), a BPN(Back Propagation Network) with one hidden, one input and one output layer was used. The input layer has seven neurons: variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer uses 6 neurons: degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine, respectively, Database for network teaming and test was constructed using a gas turbine performance simulation program. From application of the learned networks to diagnostics of the PW206C turboshaft engine, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

A Study on Performance Diagnostics of Turbo-Shaft Engine For SUAV Using Gas Path Analysis (GPA 기법을 적용한 스마트 무인기용 터보축 엔진의 성능진단에 관한 연구)

  • Lee, Eun-Young;Roh, Tae-Seong;Choi, Dong-Whan;Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.82-89
    • /
    • 2006
  • Recently operation and maintenance cost of gas turbine engines has been issued as a major parameter in terms of designing and manufacturing. Accordingly, the conception that the maintenance and repair of an engine has to be conducted in assembled condition has been spreaded out. However, it is possible only if the prediction of the engine performance is clearly identified. In this study, therefore, a diagnostic code of the engine performance has been developed by using GPA(Gas Path Analysis) and Fuzzy Logic which can analyze the engine performance and estimate the health parameters. The prediction of the quantitative performance deterioration of the established model of the turbo-shaft engine for SUAV has been achieved in a satisfied level compared to that obtained by GSP code.

Diagnostic Performance of Combined Single Photon Emission Computed Tomographic Scintimammography and Ultrasonography Based on Computer-Aided Diagnosis for Breast Cancer (유방 SPECT 및 초음파 컴퓨터진단시스템 결합의 유방암 진단성능)

  • Hwang, Kyung-Hoon;Lee, Jun-Gu;Kim, Jong-Hyo;Lee, Hyung-Ji;Om, Kyong-Sik;Lee, Byeong-Il;Choi, Duck-Joo;Choe, Won-Sick
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.201-208
    • /
    • 2007
  • Purpose: We investigated whether the diagnostic performance of SPECT scintimammography (SMM) can be improved by adding computer-aided diagnosis (CAD) of ultrasonography (US). Materials and methods: We reviewed breast SPECT SMM images and corresponding US images from 40 patients with breast masses (21 malignant and 19 benign tumors). The quantitative data of SPECT SMM were obtained as the uptake ratio of lesion to contralateral normal breast. The morphologic features of the breast lesions on US were extracted and quantitated using the automated CAD software program. The diagnostic performance of SPECT SMM and CAD of US alone was determined using receiver operating characteristic (ROC) curve analysis. The best discriminating parameter (D-value) combining SPECT SMM and the CAD of US was created. The sensitivity, specificity and accuracy of combined two diagnostic modalities were compared to those of a single one. Results: Both SPECT SMM and CAD of US showed a relatively good diagnostic performance (area under curve = 0.846 and 0.831, respectively). Combining the results of SPECT SMM and CAD of US resulted in improved diagnostic performance (area under curve =0.860), but there was no statistical differerence in sensitivity, specificity and accuracy between the combined method and a single modality. Conclusion: It seems that combining the results of SPECT SMM and CAD of breast US do not significantly improve the diagnostic performance for diagnosis of breast cancer, compared with that of SPECT SMM alone. However, SPECT SMM and CAD of US may complement each other in differential diagnosis of breast cancer.

선형 GPA 기법을 이웅한 터보프롭 엔진의 성능진단에 관한 연구

  • 공창덕;신현기;기자영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.26-26
    • /
    • 1999
  • 소·중형 산업용 항공기나 초등 훈련기용으로 많이 이용되고 있는 터보프롭 엔진의 성능진단을 위해 선형 GPA 기법을 적용하였다. 대기조건은 지상정지조건으로 하였으며 계측변수의 선정에 따른 오차율을 알아보기 위해 다양한 손상을 가정하였다. 가스터빈 엔진에서 가장 쉽게 발견될 수 있는 성능저하 원인인 압축기 오염과 터빈 부식이 발생하였을 경우를 가정하였다. 다중 손상일 경우 선형 GPA 기법의 신뢰성을 알아보기 위해 압축기에만 오염이 발생하였을 경우, 압축기와 압축기 터빈에 각각 오염과 부식이 발생하였을 경우, 압축기 터빈과 동력터빈에 동시에 부식이 발생하였을 경우, 압축기, 압축기 터빈, 동력터빈이 모두 오염과 부식이 발생하였을 경우를 가정하였다.

  • PDF