• Title/Summary/Keyword: 진공청소기용 팬모터

Search Result 10, Processing Time 0.024 seconds

실험적 방법과 이론적 방법의 비교를 통한 진공청소기용 Fan Motor의 진동소음 해석

  • 김재열;곽이구;양동조;김우진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.187-187
    • /
    • 2004
  • 진공청소기는 가전 제품 중에서 인간의 일상생활에서 꼭 필요한 가전제품의 하나이다. 그러나, 성능 향상을 위한 과도한 회전 속도 때문에 큰 소음을 유발하며 그로 인해서 사용자에게 소음으로 인한 스트레스나 피로누적 등의 큰 불편을 초래하고 있다. 이것은 진공청소기내에 있는 팬 모터가 30000∼35000 rpm으로 고속회전을 통해서 측에 연결되어 있는 임펠러를 회전시켜 공기를 흡입, 배출시키는 일련의 작동을 하면서 여러 가지 진동 및 유체소음을 일으키기 때문이다. 이러한 진공청소기용 팬모터의 소음 저감 연구는 국내외 관련회사 및 연구소에서 활발히 진행되고 있다.(중략)

  • PDF

The Experimental Analysis of Aerodynamic Sound for Fan Motor in a Vacuum Cleaner Using Laser 3-D Scanning Vibrometer and Microphone (레이저 3차원 진동측정기와 마이크로폰을 이용한 진공청소기용 팬모터의 실험적인 공력소음 분석)

  • Kwac Lee-Ku;An Jae-Sin;Kim Jae-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.46-51
    • /
    • 2005
  • The vacuum cleaner motor runs at very high speed for suction power. Specially, motor power is provided by the impeller being rotated at very high speed. The centrifugal fan consists of the impeller, the diffuser, and the circular casing. Due to the high rotating speed of the impeller and small gap distance between the impeller and the diffuser, the level of noise in the centrifugal fan is at BPF(Blade Passage Frequency) and its harmonic frequencies. In order to calculate the sound pressure of centrifugal fan, unsteady flow data are needed. The cause of noise is obtained by dividing the fluid noise by exhaust flow of fan and vibration noise by rotational vibration of vacuum cleaner fan motor. Until now, an accelerometer has been used to measure vibration. However, it can not measure vibration in some parts of brush and commutator because of motor construction and 3-D vibrating mode. This study was conducted to perform accurate analysis of vibration and aerodynamic sound for fan motor in a vacuum cleaner using a laser vibration analyzer. A silent fan motor can be designed using the data measured in this study.

The Flow Analysis for Vibration and Noise Diagnostic of Vacuum Cleaner Fan Motor (진공청소기 팬 모터의 진동 및 소음원인 분석을 위한 유동해석)

  • 김재열;곽이구;안재신;양동조;송경석;박기형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.56-63
    • /
    • 2004
  • Recently technology resulted in highly efficient and multiple-functional electric appliances considering environmental problems. One of the environmental problems is noise of a product in respect to its function. A vacuum cleaner is an essential electric appliance in our daily lives. However, severe noise resulted from high motor speed for improving the function of the appliance is a nuisance for the user. This noise is caused by vibration from various parts of the appliance and fluid noise during a series of intake and exhaust processes while rotating the impeller connected to the axle at a high speed of the fan motor inside the vacuum cleaner rotating around 30,000-35,000rpm. Despite the fact that many researchers conducted studies on reducing the noise level of the fan motor in a vacuum cleaner, only few studies have been conducted considering both the theoretical and experimental aspects using fluid analysis by measuring vibration and noise. Moreover, there has not been a study that accurately compared major noise data obtained considering both of the aspects. In this study, both aspects were considered by considering the following experimental and theoretical methods to verify the major causes of noise from the fan motor in a vacuum cleaner.

3-D Laser Vibration Measurement for Nose and Vibrating Mode Analysis of Fan Motor in a Vacuum Cleaner (진공청소기용 팬모터의 소음 및 진동모드 분석을 위한 3차원 레이저 진동측정)

  • 김재열;곽이구;송경석;안재신;이창선;윤성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.942-945
    • /
    • 2003
  • Noise cause is dividing to fluid noise by exhaust flow of fan and vibration noise by rotational vibration of motor. Until now, measuring method has been used to measure vibration by the accelerometer, this method has been not measured for the vibration in some parts of brush and commutator because of motor construction. This research was purposed on the accurate analysis. using laser vibration analyzer, of noise cause against the difficult part in old times. By using this measured data, we would like to use for the design of silent motor.

  • PDF

The Analysis of Vibration characteristics for Vacuum Cleaner Fan Motor Using 3-D Laser Vibrator (3차원 레이저 진동 측정기를 이용한 초고속 진공청소기 모터의 진동특성분석)

  • 김재열;김우진;심재기;김영석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.399-405
    • /
    • 2004
  • Recently technology resulted in highly efficient and multiple-functional electric appliances considering environmental problems. One of the environmental problems is noise of a product in respect to its function. A vacuum cleaner is an essential electric appliance in our daily lives. However, severe noise resulted from high motor speed for improving the function of the appliance is a nuisance for the user. This noise is caused by vibration from various parts of the appliance and fluid noise during a series of intake and exhaust processes while rotating the impeller connected to the axle at a high speed of the fan motor inside the vacuum cleaner rotating around 30,000-35,000 rpm. Despite the fact that many researchers conducted studies on reducing the noise level of the fan motor in a vacuum cleaner, only few studies have been conducted considering both the theoretical and experimental aspects using fluid analysis by measuring vibration and noise. Moreover, there has not been a study that accurately compared major noise data obtained considering both of the aspects. In this study, both aspects were considered by considering the following experimental and theoretical methods to verify the major causes of noise from the fan motor in a vacuum cleaner.

  • PDF

Optimal design of impeller in fan motor unit of cordless vacuum cleaner for improving flow performance and reducing aerodynamic noise (무선진공청소기 팬 모터 단품의 유량성능 향상과 공력소음 저감을 위한 임펠라 최적설계)

  • Kim, KunWoo;Ryu, Seo-Yoon;Cheong, Cheolung;Seo, Seongjin;Jang, Cheolmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.379-389
    • /
    • 2020
  • In this study, the flow and noise performances of high-speed fan motor unit for cordless vacuum cleaner is improved by optimizing the impeller which drives the suction air through flow passage of the cordless vacuum cleaner. Firstly, the unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equations are solved to investigate the flow through the fan motor unit using the computational fluid dynamics techniques. Based on flow field results, the Ffowcs-Williams and Hawkings (FW-H) integral equation is used to predict flow noise radiated from the impeller. Predicted results are compared to the measured ones, which confirms the validity of the numerical method used. It is found that the strong vortex is formed around the mid-chord region of the main blades where the blade curvature change rapidly. Given that vortex acts as a loss for flow and a noise source for noise, impeller blade is redesigned to suppress the identified vortex. The response surface method using two factors is employed to determine the optimum inlet and outlet sweep angles for maximum flow rate and minimum noise. Further analysis of finally selected design confirms the improved flow and noise performance.

System-level Analysis of a Fan-motor Assembly for Vacuum Cleaner (진공청소기용 팬-모터 어셈블리의 시스템-레벨 분석)

  • Park, Chang-Hwan;Park, Kyung-Hyun;Chang, Kyung-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.5-14
    • /
    • 2017
  • A fan-motor assembly in a vacuum cleaner is analyzed through system-level analysis method. This system consisted of three components, a fan, motor, and the flow resistance of the motor, or of the vacuum cleaner. System-level analysis method is characterized by the combination of torque matching at a constant throttling condition between the fan and the motor and the pressure drop at a constant flow rate due to the flow resistance of the motor, or of the vacuum cleaner. The performance characteristics of the fan-motor assembly and the vacuum cleaner system could be predicted over the whole range of operation, based on the characteristics of each component. The predicted performance of the vacuum cleaner system through system-level analysis agreed well with the experimental results within 4.5% difference of pressure and 6% difference of the efficiency. The effect of flow resistance of a motor is investigated and it is found that the efficiency decrease of fan-motor assembly at the constant flow rate due to the flow resistance of a motor is determined by the flow resistance ratio(FRR), which is defined as a ratio of flow resistance of motor and the flow resistance of a constant throttling condition of a given point. The fan-motor assembly(S2 model) was modified to reduce the FRR from 9.0% to 2.4% and the experimental result shows that the efficiency of S2 model was improved by about 3% at best efficiency point.

The Analysis of the Unsteady Flow Field and Aerodynamic Sound of Fan Motor in a Vacuum Cleaner (진공청소기용 팬 모터의 비정상 유동 해석 및 공력소음 해석)

  • 김재열;심재기;송경석;오성민;양동조;김우진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.281-286
    • /
    • 2004
  • The vacuum cleaner motor runs on very high speed for the suction power. Specially, the motive power is provided by the impeller being rotate on very high speed. And centrifugal fan consists of the impeller, the diffuser, and the circular casing. Due to the high rotating speed or the impeller and small gap distance between the impeller and diffuser, the centrifugal fan makes very high noise level at BPF and harmonic frequencies. In order to calculate the sound pressure of centrifugal fan, the unsteady flow data is needed. And Noise cause is dividing to fluid noise by exhaust flow of fan and vibration noise by rotational vibration of vacuum cleaner fan motor. Until now, measuring method has been used to measure vibration by the accelerometer; this method has been not measured for the vibration in some parts of brush and commutator because of motor construction and 3-D vibrating mode. This paper was purposed on the accurate analysis, using laser vibration analyzer,. By using this measured data of noise cause against the difficult part in old times, we would like to use for the design of silent fan motor.

  • PDF

Aerodynamic noise reduction of fan motor unit of cordless vacuum cleaner by optimal designing of splitter blades for impeller (임펠라 스플리터 날개 최적 설계를 통한 무선진공청소기 팬 모터 단품의 공력 소음 저감)

  • Kim, Kunwoo;Ryu, Seo-Yoon;Cheong, Cheolung;Seo, Seongjin;Jang, Cheolmin;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.524-532
    • /
    • 2020
  • In this study, noise radiated from a high-speed fan-motor unit for a cordless vacuum cleaner is reduced by designing splitter blades on the existing impeller. First of all, in order to investigate the flow field through a fan-motor unit, especially impeller, the unsteady incompressible Reynolds-Averaged Navier-Stokes (RANS) equations are numerically solved by using computational fluid dynamic technique. With predicted flow field results as input, the Ffowcs Williams-Hawkings (FW-H) integral equation is solved to predict aerodynamic noise radiated from the impeller. The validity of the numerical methods is confirmed by comparing the predicted sound pressure spectrum with the measured one. Further analysis of the predicted flow field shows that the strong vortex is formed between the impeller blades. As the vortex induces the loss of the flow field and acts as an aerodynamic noise source, supplementary splitter blades are designed to the existing impeller to suppress the identified vortex. The length and position of splitter are selected as design factors and the effect of each design factor on aerodynamic noise is numerically analyzed by using the Taguchi method. From this results, the optimum location and length of splitter for minimum radiated noise is determined. The finally selected design shows lower noise than the existing one.