• Title/Summary/Keyword: 직진도

Search Result 259, Processing Time 0.023 seconds

YOLO-based Traffic Signal Detection for Identifying the Violation of Motorbike Riders (YOLO 기반의 교통 신호등 인식을 통한 오토바이 운전자의 신호 위반 여부 확인)

  • Wahyutama, Aria Bisma;Hwang, Mintae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.141-143
    • /
    • 2022
  • This paper presented a new technology to identify traffic violations of motorbike riders by detecting the traffic signal using You Only Look Once (YOLO) object detection. The hardware module that is mounted on the front of the motorbike consists of Raspberry Pi with a camera to run the YOLO object detection, a GPS module to acquire the motorcycle's coordinate, and a LoRa communication module to send the data to a cloud DB. The main goal of the software is to determine whether a motorbike has violated a traffic signal. This paper proposes a function to recognize the red traffic signal colour with its movement inside the camera angle and determine that the traffic signal violation happens if the traffic signal is moving to the right direction (the rider turns left) or moving to the top direction (the riders goes straight). Furthermore, if a motorbike rider is violated the signal, the rider's personal information (name, mobile phone number, etc), the snapshot of the violation situation, rider's location, and date/time will be sent to a cloud DB. The violation information will be delivered to the driver's smartphone as a push notification and the local police station to be used for issuing violation tickets, which is expected to prevent motorbike riders from violating traffic signals.

  • PDF

Overview and Suggestions on the Direction Guidance System on Traffic Sign in Suwon City (도로안내표지의 안내지명 체계에 관한 실태분석 및 개선방안)

  • Yoon, Hyojin;Park, Miso
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.275-283
    • /
    • 2006
  • Recently, there are increasing needs to provide sufficient information on road signs for expanding cities and traffic networks. Improving efficiency of direction guidance information from road signs not only requires criteria for but also systematic approach to selecting place names that appear on road sings. As such, this paper looks at road direction information from existing road signs that leads to Suwon and investigates whether the current system of road sings provides efficient, systematic and continuous direction information for road users to easily reach their destination. In this paper, Suwon's city hall is set up as the final destination, which is linked from five other cities, Euiwang, Ansan, Hwaseong, Osan and Yongin. The paper attempts to find out whether there is continuity and suitable number of road signs for direction information by analyzing the road signs between these 5 cities and Suwon with respect to direction, direction advance notice and direction guidance. It is found that road users cannot easily find the needed information on their destination from the existing road signs and that continuity of selected place names that systematically appear on road signs is insufficiency. That is to say, the findings of the paper are that while it is easy for road users to find place names that are classified under land marks or the first-class selection of place names on road signs, it is difficult to obtain information from road signs on place names that are grouped under the second or third class. In addition, direction guidance on road signs is problematic, because the appearance frequency of road signs is not adequate and the continuity of road signs is not effective. Moreover, there is insufficient information on local direction guidance for immediate destinations on road signs with respect to turning left or right or going straight. Hence road signs in urban area need systematic improvement to find easily some destination.

A study on the manufacture of humidity sensors using layered silicate nanocomposite materials (층상 실리케이트계 나노복합 소재 적용 습도센서 제조에 관한 연구)

  • Park, Byoung-Ki
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, evaluated the properties of layered silicate-based nanocomposite sensitive film. For the fabrication of nanocomposite materials, we selected organically modified layered silicate materials, specifically Cloisite® and Bentone®, which were treated with quaternary ammonium salts. The impedance of the humidity sensors containing organically modified montmorillonite/hectorite clay decreased with increasing relative humidity(RH%). In the case of the Cloisite® humidity sensor exhibited slightly better impedance linearity and hysteresis compared to the Bentone® 38 humidity sensor. Additionally the impedance of the sensor with Bentone® 38 addition was the lowest when compared to the Cloisite®-modified sensor. Comparing the Cloisite®-modified sensors individually, we observed different moisture absorption characteristics based on the hydrophilic properties of the organic-treated materials. The response speed of Cloisite® 93A tended to be slower due to differences in moisture evaporation rates influenced by the hydrophilic organic components. Based on these results, moisture barriers utilizing organically modified layered silicate materials may exhibit slightly lower moisture absorption properties compared to conventional polymer-based moisture barriers. However, their excellent stability, simple processing, and cost-effectiveness make them suitable for humidity sensor applications.

A Study on the Operational Method of Urban Arterial With U-Turn (U-Turn을 이용한 간선도로 운영방안)

  • 박용진;손한철
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2000
  • U-turns are allowed widely at the intersections by local police department while the left-turn Phases have been gradually Prohibited. However, any strategies for U-turn movements at signalized intersections are unavailable. Therefore, the Purpose of this study is to Propose the efficient operational method of Urban arterial adopting U-turn strategies. Four alternatives are evaluated they are, 1) U-turn movements are allowed at the adjacent intersection with exclusive U-turn lane while the major or the minor approach is Prohibited, 2) U-turn movements are allowed at the adjacent mid-block Pedestrian crossing with exclusive U-turn lane while the major approach is Prohibited. 3) U-turn movements are allowed at the adjacent mid-block Pedestrian crossing with exclusive U-turn lane while the minor approach is prohibited and 4) Comparative one between alternative 3 and 4. From the results of this study, it concludes that the method of U-turn movements allowed at the adjacent mid-block pedestrian crossing with exclusive U-turn lane is the most effective strategy among those alternatives. The strategies of alternative 1 and 4 are Proposed by the boundary based on the major through and left-turn volumes and the minor left-turn volume.

  • PDF

Development of Empirical Fragility Function for High-speed Railway System Using 2004 Niigata Earthquake Case History (2004 니가타 지진 사례 분석을 통한 고속철도 시스템의 지진 취약도 곡선 개발)

  • Yang, Seunghoon;Kwak, Dongyoup
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.111-119
    • /
    • 2019
  • The high-speed railway system is mainly composed of tunnel, bridge, and viaduct to meet the straightness needed for keeping the high speed up to 400 km/s. Seismic fragility for the high-speed railway infrastructure can be assessed as two ways: one way is studying each element of infrastructure analytically or numerically, but it requires lots of research efforts due to wide range of railway system. On the other hand, empirical method can be used to access the fragility of an entire system efficiently, which requires case history data. In this study, we collect the 2004 MW 6.6 Niigata earthquake case history data to develop empirical seismic fragility function for a railway system. Five types of intensity measures (IMs) and damage levels are assigned to all segments of target system for which the unit length is 200 m. From statistical analysis, probability of exceedance for a certain damage level (DL) is calculated as a function of IM. For those probability data points, log-normal CDF is fitted using MLE method, which forms fragility function for each damage level of exceedance. Evaluating fragility functions calculated, we observe that T=3.0 spectral acceleration (SAT3.0) is superior to other IMs, which has lower standard deviation of log-normal CDF and low error of the fit. This indicates that long-period ground motion has more impacts on railway infrastructure system such as tunnel and bridge. It is observed that when SAT3.0 = 0.1 g, P(DL>1) = 2%, and SAT3.0 = 0.2 g, P(DL>1) = 23.9%.

A Study on the Optimum Field Condition for the Performance of Rice Transplanter (수도이앙기(水稻移秧機)의 이앙작업(移秧作業)을 위한 적정포장조건(適正圃場條件)에 관한 연구(硏究))

  • Kim, Tai-Kyu;Choi, Kyu-Hong
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 1981
  • For purpose of investigation the proper paddy field condition in performance of rice transplanter according to the various elapsed times (0.5, 1, 1.5, 2 days) after puddling and plowing (12, 15, 18 cm depth), this experiment was carried out on the paddy field located in Chil Am Dong, Jin Ju City, from April to May in 1980. The results are summarized as follows; 1. The practical working power for the elapsed time 0.5 days and plowing depth 18cm was about 0.8 ps, which was the highest among the plots, so the power out-put(2.5~3.5 p.s) of these engines are considered to be enough for the transplanting under these field conditions. 2. The percentage of slip increased proportional1y to the plowing depth and decreased proportionally to the elapsed time after puddling, and the highest and lowest percentages of slip were 42.5% in elapsed time 0.5 days, plowing depth 18 cm, and 26.5% in elapsed time 2 days, plowing depth 12 cm, respectively. 3. In the plot of elapsed time 2 days and plowing depth 12 cm, the planting distance was 13.9 cm, which was closed to the proper planting distance 14 cm. 4. The percentage of missing hill was lowest(1.5%) in the plot of elapsed time 2 days and plowing depth 12 cm. 5. The planted depth in the plot of the elapsed time 2 days and plowing depth 15 cm was 2. 95 cm, which was closed to the proper planting depth 3 cm. 6. The angle of planting postures in the plot of elapsed time 2 days and plowing depth 12 cm was $89^{\circ}$, which was closed to the desirable posture angle $90^{\circ}$. 7. The deviation from the straight transplanting line was lowest in the plot of the elapsed time 2 days and plowing depth 12 cm. 8. From the results above mentioned, it is recommended that the field condition under the elapsed time 2 days and plowing depth 12 cm is the most favorable one for the working performance of rice thansplanter.

  • PDF

Association Study of Zygote Arrest 1 on Semen Kinematic Characteristics in Duroc Boars (두록 정자 운동학적 특성과 Zygote arrest 1 유전자 변이와의 연관성 분석)

  • Lee, Mi Jin;Ko, Jun Ho;Kim, Yong Min;Choi, Tae Jeong;Cho, Kyu Ho;Kim, Young Sin;Jin, Dong Il;Kim, Nam Hyung;Cho, Eun Seok
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.29 no.4
    • /
    • pp.150-157
    • /
    • 2018
  • The Zygote arrest 1 (ZAR1) gene is known to affect early embryonic development in various vertebrates. In this study, we performed the association analysis to check whether there is any significant relationship between semen kinematic characteristics and the ZAR1 gene. To determine semen kinematic characteristics, we measured motility (MOT), straight-line velocity (VSL), curvilinear velocity (VCL), average path velocity (VAP), linearity (LIN), straightness (STR), amplitude of lateral head displacement (ALH), and beat cross frequency (BCF) of spermatozoa in boars. In order to detect single nucleotide polymorphisms (SNPs), we extracted genomic DNA from multiple Duroc boars, and then subsequently used them in sequencing reactions. As a result, three SNPs were detected in the intronic region of ZAR1 gene (g.2435T>C in intron 2, g.2605G>A and g.4633A>C in intron 3 ). SNPs g.2435T>C and g.2605G>A were significantly associated with MOT (p<0.01) and VSL (p<0.05), and g.4633A

Development of control system for complex microbial incubator (복합 미생물 배양기의 제어시스템 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.122-126
    • /
    • 2023
  • In this paper, a control system for a complex microbial incubator was proposed. The proposed control system consists of a control unit, a communication unit, a power supply unit, and a control system of the complex microbial incubator. The controller of the complex microbial incubator is designed and manufactured to convert analog signals and digital signals, and control signals of sensors such as displays using LCD panels, water level sensors, temperature sensors, and pH concentration sensors. The water level sensor used is designed and manufactured to enable accurate water level measurement by using the IR laser method with excellent linearity in order to solve the problem that existing water level sensors are difficult to measure due to foreign substances such as bubbles. The temperature sensor is designed and used so that it has high accuracy and no cumulative resistance error by measuring using the thermal resistance principle. The communication unit consists of two LAN ports and one RS-232 port, and is designed and manufactured to transmit signals such as LCD panel, PCT panel, and load cell controller used in the complex microbial incubator to the control unit. The power supply unit is designed and manufactured to supply power by configuring it with three voltage supply terminals such as 24V, 12V and 5V so that the control unit and communication unit can operate smoothly. The control system of the complex microbial incubator uses PLC to control sensor values such as pH concentration sensor, temperature sensor, and water level sensor, and the operation of circulation pump, circulation valve, rotary pump, and inverter load cell used for cultivation. In order to evaluate the performance of the control system of the proposed complex microbial incubator, the result of the experiment conducted by the accredited certification body showed that the range of water level measurement sensitivity was -0.41mm~1.59mm, and the range of change in water temperature was ±0.41℃, which is currently commercially available. It was confirmed that the product operates with better performance than the performance of the products. Therefore, the effectiveness of the control system of the complex microbial incubator proposed in this paper was demonstrated.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.