• Title/Summary/Keyword: 직접 해시 테이블

Search Result 5, Processing Time 0.016 seconds

An Efficient Hashing Mechanism of the DHP Algorithm for Mining Association Rules (DHP 연관 규칙 탐사 알고리즘을 위한 효율적인 해싱 메카니즘)

  • Lee, Hyung-Bong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.5 s.108
    • /
    • pp.651-660
    • /
    • 2006
  • Algorithms for mining association rules based on the Apriori algorithm use the hash tree data structure for storing and counting supports of the candidate frequent itemsets and the most part of the execution time is consumed for searching in the hash tree. The DHP(Direct Hashing and Pruning) algorithm makes efforts to reduce the number of the candidate frequent itemsets to save searching time in the hash tree. For this purpose, the DHP algorithm does preparative simple counting supports of the candidate frequent itemsets. At this time, the DHP algorithm uses the direct hash table to reduce the overhead of the preparative counting supports. This paper proposes and evaluates an efficient hashing mechanism for the direct hash table $H_2$ which is for pruning in phase 2 and the hash tree $C_k$, which is for counting supports of the candidate frequent itemsets in all phases. The results showed that the performance improvement due to the proposed hashing mechanism was 82.2% on the maximum and 18.5% on the average compared to the conventional method using a simple mod operation.

A Hash based R-Tree for Fast Search of Mass Spatial Data (대용량 공간 데이터의 빠른 검색을 위한 해시 기반 R-Tree)

  • Kang, Hong-Koo;Kim, Joung-Joon;Shin, In-Su;Han, Ki-Joon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.82-89
    • /
    • 2008
  • 최근, GIS 분야에서 RFID와 GPS 센서 같은 위치 및 공간 데이타를 포함하는 다양한 GeoSensor의 활용으로 수집되는 공간 데이타가 크게 증가하면서, 대용량 공간 데이타의 빠른 처리를 위한 공간 인덱스의 중요성이 높아지고 있다. 특히, 대표적인 공간 인덱스인 R-Tree를 기반으로 검색 성능을 높이기 위한 연구가 활발히 진행되고 있다. 그러나, 기존 연구는 R-Tree에서 노드의 MBR 간의 겹침이나 트리 높이를 어느 정도 줄임으로써 다소 검색 성능을 향상시켰지만, 트리 검색에서 발생하는 불필요한 노드 접근 비용 문제를 효율적으로 해결하지 못하고 있다. 본 논문에서는 이러한 문제를 해결하고 R-Tree에서 대용량 공간 데이타의 빠른 검색을 제공하는 인덱스인 HR-Tree(Hash based R-Tree)를 제시한다. HR-Tree는 트리 검색 없이 R-Tree 리프 노드를 직접 접근할 수 있는 해시 테이블을 이용함으로써 R-Tree의 검색 성능을 높인다. 해시 테이블은 데이타 영역을 차원에 따라 반복적으로 분할한 Partition과 대응되는 R-Tree 리프 노드의 MBR과 포인터들로 구성된다. 각 Partition은 생성 과정에서 고유의 식별 코드를 갖기 때문에 Partition 코드가 주어지면 해시 테이블에서 해당 레코드를 쉽게 접근할 수 있다. 또한, HR-Tree는 R-Tree구조의 변경없이 다양한 R-Tree 변형 구조에 쉽게 적용할 수 있는 장점이 있다. 마지막으로 실험을 통하여 HR-Tree의 우수성을 입증하였다.

  • PDF

Performance Evaluation of the FP-tree and the DHP Algorithms for Association Rule Mining (FP-tree와 DHP 연관 규칙 탐사 알고리즘의 실험적 성능 비교)

  • Lee, Hyung-Bong;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.35 no.3
    • /
    • pp.199-207
    • /
    • 2008
  • The FP-tree(Frequency Pattern Tree) mining association rules algorithm was proposed to improve mining performance by reducing DB scan overhead dramatically, and it is recognized that the performance of it is better than that of any other algorithms based on different approaches. But the FP-tree algorithm needs a few more memory because it has to store all transactions including frequent itemsets of the DB. This paper implements a FP-tree algorithm on a general purpose UNK system and compares it with the DHP(Direct Hashing and Pruning) algorithm which uses hash tree and direct hash table from the point of memory usage and execution time. The results show surprisingly that the FP-tree algorithm is poor than the DHP algorithm in some cases even if the system memory is sufficient for the FP-tree. The characteristics of the test data are as follows. The site of DB is look, the number of total items is $1K{\sim}7K$, avenrage length of transactions is $5{\sim}10$, avergage size of maximal frequent itemsets is $2{\sim}12$(these are typical attributes of data for large-scale convenience stores).

A Network-based Locator-Identifier Separation Scheme using DHT in SDN (SDN환경에서 DHT를 이용한 네트워크 기반 위치자-식별자 분리 기술)

  • Lee, Chan-Haeng;Min, Sung-Gi;Choi, Chang-Won
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.2
    • /
    • pp.37-49
    • /
    • 2016
  • An IP address is used as a host identifier and a locator to bind hosts and applications to their location in existing Internet. Several protocols are proposed to eliminate this binding. Most of these protocols use IPv6-based host identifiers to maintain compatibility with existing Internet, but these identifiers cannot be handled by standard IPv6 routers because such identifiers are unroutable. Therefore, host identifiers need to be usually converted to locators at hosts, and the standard IPv6 protocol should be modified to interoperate with these protocols. In this paper, we propose a network-based host identifier locator separating scheme in software-defined networking. The proposed scheme separates the underlying network into Host Identity and IP domains in order to directly forward unroutable identifiers. The Host Identity domain operates as an overlaid network over IP domain, and it makes the unroutable identifiers to be routable using distributed hash table based routing strategy. For the evaluation, we compared the proposed scheme with the previous scheme using signaling costs and packet delivery costs. The result shows that the proposed scheme is more suitable in the recent mobile-based environments.

An Efficient Technique for Processing Frequent Updates in the R-tree (R-트리에서 빈번한 변경 질의 처리를 위한 효율적인 기법)

  • 권동섭;이상준;이석호
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.261-273
    • /
    • 2004
  • Advances in information and communication technologies have been creating new classes of applications in the area of databases. For example, in moving object databases, which track positions of a lot of objects, or stream databases, which process data streams from a lot of sensors, data Processed in such database systems are usually changed very rapidly and continuously. However, traditional database systems have a problem in processing these rapidly and continuously changing data because they suppose that a data item stored in the database remains constant until It is explicitly modified. The problem becomes more serious in the R-tree, which is a typical index structure for multidimensional data, because modifying data in the R-tree can generate cascading node splits or merges. To process frequent updates more efficiently, we propose a novel update technique for the R-tree, which we call the leaf-update technique. If a new value of a data item lies within the leaf MBR that the data item belongs, the leaf-update technique changes the leaf node only, not whole of the tree. Using this leaf-update manner and the leaf-access hash table for direct access to leaf nodes, the proposed technique can reduce update cost greatly. In addition, the leaf-update technique can be adopted in diverse variants of the R-tree and various applications that use the R-tree since it is based on the R-tree and it guarantees the correctness of the R-tree. In this paper, we prove the effectiveness of the leaf-update techniques theoretically and present experimental results that show that our technique outperforms traditional one.