• Title/Summary/Keyword: 직사각형 컵성형

Search Result 2, Processing Time 0.017 seconds

Formability of Sheet Metal in Noncircular Cup Drawing(I) (for Rectangular Cross Section) (비원형 단면에 대한 판재 성형성(I) (직사각형 단면에 대하여))

  • Shin, J.H.;Kim, M.S.;Seo, D.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.84-95
    • /
    • 1994
  • The effects of punch and blank shapes in the rectangular cup drawing process are examined experimentally to improve the formabilities. For this purpose, three blank shapes which are h-bl., G-bl., and T-bl., and five punch shape factors which are the ratios of two adjacent side lengths in rectangular cross section are adopted. The constructing methods of the three blank shapes are as follows. The h-bl. is designed by slip-line theory, and the G-bl. is selected for the similar shape to the punch. The T-bl. is obtained by the drawing method which is introduced in the technical references. The five punch shape factors are selected for length/width=1, 1.25, 1.5, 1.75 and 2. The experimental procedures are performed for all the above forming conditions to investigate and compare the formabilities. As a result, it is verified experimentally that the rectangular cups drawn by the h-bl. are more ideal than those drawn by G-bl. and T-bl.. They have not only higher limiting drawing ratio, more uniformity in drawn cup heights and more ideal thickness distributions, but also need relatively less maximum drawing forces.

  • PDF

Forging Die Design for Vent Forming of Square Cup Battery Case (사각 컵 배터리 케이스 바닥 벤트 성형을 위한 단조 금형 설계)

  • Lee, Sang-Hoon;Kwon, Soon-Ho;Chung, Hoon;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.330-335
    • /
    • 2017
  • The demand for electric motor fuel cells has surged in the automotive industry, leading to a recent increase in the demand for square aluminum cans used as fuel cell battery casings. The air vent located on the bottom of the rectangular battery casing prevents large explosions by intermittent pressure release prior to the accumulation of abnormally high pressures. Conventionally, the square cup battery casing is produced via six-step deep drawing, with the outer shape of the vent being manufactured by welding to the square battery casing. On the other hand, this study directly incorporated the air vent outlet into the bottom surface of the rectangular casing. The product of a coupled finite element analysis technique applying the thickness and contour generated from the square cup multi-step deep drawing formation analysis was used as the forging input shape. The results yielded increased prediction accuracy and the advanced prediction of defects, such as swelling and fracture. Based on the results of the initial analyses, two of the generated forging shapes were determined to be suitable, with the optimal forging shape being determined by molding analysis. The results presented here were validated by mold fabrication and a subsequent comparison of the actual and analytical results.