• Title/Summary/Keyword: 직렬연결 수직 및 수평흐름

Search Result 2, Processing Time 0.021 seconds

Evaluation of Combined Vertical and Horizontal Flow Zeolite-Filled Reed Bed with Intermittent Feeding for Sewage Treatment (직렬연결 수직 및 수평 흐름 갈대 제올라이트 인공습지에 의한 생활하수 처리)

  • Seo, Jeoung-Yoon
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.51-59
    • /
    • 2014
  • A sewage was treated using serially combined vertical and horizontal flow zeolite-filled reed bed. The sewage from the student dormitory of Changwon National University was fed into the reed bed for 10 minutes every 6 hours at the hydraulic load of 314 $L/m^2{\cdot}day$. The reed bed depth was 100cm and the zeolite mixture was filled in the reed bed. The mixture consisted of the same volume of two types of zeolite ; 0.5~1mm and 1~3mm in diameter. pH value decreased in vertical bed, while it increased in horizontal bed. But DO concentration in the effluent of both beds was higher than that in the influent. Average removal efficiencies of the entire treatment system were 99.22% SS, 95.56% BOD, 91.02% $COD_{Cr}$, 87.78% $COD_{Mn}$, 45.87% T-N, 99.88% $NH{_4}^+-N$ and 71.17% T-P. Most of T-N in the effluent was $NO{_3}^--N$. However, the concentration of $NO{_2}^--N$ in the effluent was lower than 0.04 mg/L. All removal efficiencies did not show a remarkable seasonal change.

Evaluation of Combined Vertical and Horizontal Flow Sand-Filled Reed Constructed Wetland with Intermittent Feeding for Sewage Treatment (간헐 주입 2단(수직 및 수평 흐름) 모래 갈대 인공습지에 의한 생활하수 처리)

  • Seo, Jeoung-Yoon
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.261-268
    • /
    • 2014
  • A sewage was treated using serially combined vertical(VFCW)and horizontal flow sand-filled reed constructed wetland(HFCW) with intermittent feeding. The sand had 1~3 mm diameter. The sewage entering the sewage treatment plant of Gyeonsang National University was fed into the reed constructed wetland bed for 10 minutes every 6 hours at the hydraulic load of $314L/m^2{\cdot}day$ based on the surface ares of the VFCW. In the VFCW effluent pH values were lower than those of the influent, whereas they were higher than those of the influent in the HFCW. DO values were increased in VFCW, but they were decreased in the HFCW. The OTR was $58.72gO_2/m^2{\cdot}day$ in the VFCW and $7.72gO_2/m^2{\cdot}day$ in the HFCW. Average removal efficiencies were SS 94.80%, BOD 90.77%, $COD_{Cr}$ 85.87%, $COD_{Mn}$ 87.72%, T-N 64.74%, $NH_4{^+}$-N 86.44%, T-P 87.70%. Nearly, half of T-N in the effluent was $NO_3{^-}$-N but the concentration of $NO_2{^-}$-N in the effluent was less than 0.64 mg/L.