• Title/Summary/Keyword: 직교 절삭 가공

Search Result 14, Processing Time 0.02 seconds

Study on Characteristics of Cryogenic Machining Process of Titanium Alloy at a Low Cutting Speed (티타늄 합금 소재 저속 영역 극저온 가공 특성 연구)

  • Kim, Do Young;Kim, Dong Min;Park, Hyung Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.237-241
    • /
    • 2017
  • Cryogenic machining uses liquid nitrogen (LN2) as a coolant. This machining process can reduce the cutting temperature and increase tool life. Titanium alloys have been widely used in the aerospace and automobile industries because of their high strength-to-weight ratio. However, they are difficult to machine because of their poor thermal properties, which reduce tool life. In this study, we applied cryogenic machining to titanium alloys. Orthogonal cutting experiments were performed at a low cutting speed (1.2 - 2.1 m/min) in three cooling conditions: dry, cryogenic, and cryogenic plus heat. Cutting force and friction coefficients were observed to evaluate the machining characteristics for each cooling condition. For the cryogenic condition, cutting force and friction coefficients increased, but decreased for the cryogenic plus heat condition.

The Study on the Optimal Working Condition for Vibration, Surface Roughness and Cutting Temperature in End-milling (엔드밀 가공시 진동, 표면거칠기, 절삭온도에 미치는 최적가공조건에 관한 연구)

  • Hong, Do-Kwan;Kim, Dong-Young;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1322-1329
    • /
    • 2004
  • End-milling has been used widely in industrial system because it is effective to a material manufacturing with various shapes. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum mechanical vibration of main spindle, surface roughness and cutting temperature have an effect on end-milling condition such as, cutting direction, revolution of spindle, feed rate and depth of cut, etc. Therefore, this study carried to decide the working condition for optimum mechanical vibration of main spindle, surface roughness and cutting temperature using design of experiments, ANOVA and characteristic function. From the results of experimentation, mechanical vibration has an effect on revolution of spindle, radial depth of cut, and axial depth of cut. The surface roughness has an effect on cutting direction, revolution of spindle and depth of cut. And then the optimum condition used design of experiments is upward cutting In cutting direction, 600 rpm in revolution of spindle, 240 mm/min in feed rate, 2 mm in axial depth of cut and 0.25 mm in radial depth of cut. By design of experiments and characteristic function, it is effectively represented shape characteristics of mechanical vibration, surface roughness and cutting temperature in end-milling.

Analysis of Cooling Effect Using Compressed Cold Air in Turing Process (압축냉각공기를 이용한 선삭가공시 냉각효과 해석)

  • Kwak, Seung-Yong;Kim, Dong-Kil;Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1007-1013
    • /
    • 2003
  • As environmental restriction kas continuously become more strict, machining technology has emphasized on development of environment-friendly technology. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on workers health and working environment. In this study, compressed cold air was used as a replacement for conventional cutting fluids. The cooling effect on cutting tool was analyzed using the finite element method and the computational fluid dynamics. This study focused on the temperature simulation of cutting tool by real flow analysis of cold air. The maximum flow rate and the minimum temperature of compressed cold air are 300ι/min and -30$^{\circ}C$ respectively. To compare the simulation and experimental results, inner temperature of the cutting tool was measured with the thermocouple embedded in the insert. The results show that the analysis of cutting temperature using FEM and CFD is resonable, and the replacement of cutting fluid with cold air is available.

3D Visualization of Auto Pattern Maker Data for Eyeglass Lens Machining (안경렌즈 가공을 위한 취형기 데이터의 3D 시각화)

  • Kim, Dae-Yun;Kim, Sul-Ho;Kim, Gye-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1459-1460
    • /
    • 2015
  • 안경을 제작하기 위하여 안경테 혹은 렌즈의 사이즈를 측정하는 기계를 취형기라 하며, 측정된 데이터를 사용하여 렌즈를 절삭하는 기계를 옥습기라 한다. 본 논문에서는 취형기를 통해 획득한 데이터를 3D 시각화 하는 방법에 대하여 서술한다. 취형기의 탐침자에서 획득된 데이터는 1024개, 즉 데이터당 약 $0.352^{\circ}$에 해당하는 각도로 획득한 데이터로 구성되며, 각 데이터는 취형기 중심에서 경계까지의 거리와 렌즈 혹은 안경테의 높이 데이터를 포함한다. 해당 데이터는 취형기에서 얻은 원통좌표계 형식의 원시 데이터 형태에서 OpenGL에서 사용하기 좋은 3차원 데이터 형식으로 나타낼 수 있도록 재가공하여 X, Y, Z 축 기반의 3차원 직교좌표계 형식으로 변환한다. 그 후, OpenGL을 사용하여 3D로 시각화하였다. 해당 데이터를 회전할 수 있도록 하기 위하여 쿼터니언 기반의 ArcBall을 사용하여 회전 가능하게 하였으며, 3D 시각화 된 결과를 확대/축소할 수 있게 하였다. 디스플레이에서 실제와 같은 크기로 출력하기 위하여 DPI를 활용한 축척 계산법을 사용하였고, 출력결과의 더 나은 시각화를 위하여 평균보간법을 사용하였다.