• Title/Summary/Keyword: 직교 모드

Search Result 142, Processing Time 0.029 seconds

Evaluating Wind Load and Wind-induced Response of a Twin Building using Proper Orthogonal Decomposition (트윈 빌딩의 적합 직교 분해 기법을 이용한 풍하중 및 풍응답 평가)

  • Kim, Bub-Ryur
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.309-314
    • /
    • 2018
  • The wind load and structural characteristics of a twin building are more complex than those of conventional high-rise buildings. The pressure load due to wind on a twin building was therefore measured via wind tunnel experiments to analyze such characteristics. The wind pressure pattern was then deduced from measured data using proper orthogonal decomposition. Channeling and vortex shedding were observed in the first and second modes, respectively. The along-wind loads on the two buildings featured a positive correlation and the cross-wind loads featured no correlation. Such a correlation affected the wind-induced displacement. The structural member connecting the two buildings had an insignificant effect on the positive correlation, but it notably reduced the wind-induced displacement with a negative correlation.

Polarization splitting characteristics of the side-polished fiber coupler with a thin metal interlayer (금속층이 포함된 측면 연마 광섬유 결합기의 편광 분리 특성)

  • 김광택;황보승
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.228-234
    • /
    • 2002
  • We report theoretical investigation on the polarization selective coupling characteristics of a side-polished fiber directional coupler with a thin metal interlayer. Based on normal mode theory the coupling properties of the device under various structural conditions are analyzed. It is shown that the coupling strength between TE modes weakens rapidly with increase or metal interlayer thickness, whereas that between TM modes becomes stronger. The design conditions of the polarization splitter using the coupler to achieve high extinction ratio and low insertion loss are presented.

Design and implementation of dual-mode cavity filter with achebyshev response (체비셰프 응답을 갖는 이중모드 공동 공진기 필터의 설계 및 제작)

  • 김상철;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.505-513
    • /
    • 1996
  • In this paper the dual-mode bandpass filters with a Chebyshev response are designed and manufactured at Ku-band as well as K-band. Manufactured filters are resonated by two independent orthogonal $TE_{113}$ circular-cavity modes and characterized by 4-pole Chebyshev function. One is operating at a center frequency of 12.5GHz with a bandwidth of 100MHz and the other, a center frequency of 19.25GHz with 120MHz, respectively. The measureed experimental results of a 12.5GHZ dual-mode filter ahve a 1.2dB intertion loss in the passband and 65dB out-of-rejection, and a 19.25GHz filter has a 1.55dB insertion loss and 70dB out-of-rejection. These experimantal results shoults show good agreements with the design specifications.

  • PDF

Corresponding Points Estimation of Motion Images by Orthogonal Function Expansion (직교 함수 전개법에 의한 동영상의 대응점 추출)

  • 김진우;김경태
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.380-388
    • /
    • 2000
  • In computing the optical flow, Horn and Schunck's method which is a representative algorithm is based on differentiation. Therefore it is difficult to estimate the velocity for a large displacement by this algorithm. In this paper, we propose a method for estimating nonuniform motion from sequential images which is based on integral brightness constancy constraints. The equations which transform a source image to a target image are expressed as a function of the displacement field. If marginal effects can be neglected, the form of the transformation integral transform or orthogonal expansion can be determined from the expansion coefficients of the two images. The apparent displacement field is then computed iteratively by a projection method which utilities the functional derivatives of the linearized moment equations. We demonstrate that the performance of the orthogonal function transform on the data set of large motion.

  • PDF

Delamination Analysis of Orthotropic Laminated Plates Using Moving Nodal Modes (이동절점모드를 사용한 직교이방성 적층평판의 층간분리해석)

  • Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2012
  • In this study, the delamination analysis has been implemented to investigate the initiation and propagation of crack in composite laminates composed of orthotropic materials. A simple modeling was achieved by moving nodal technique without re-meshing work when crack propagation occurred. This paper aims at achieving two specific objectives. The first is to suggest a very simple modeling scheme compared with those applied to conventional h-FEM based models. To verify the performance of the proposed model, analysis of double cantilever beams with composite materials was implemented and then the results were compared with reference values in literatures. The second one is to investigate the behavior of interior delamination problems using the proposed model. To complete these objectives, the full-discrete-layer model based on Lobatto shape functions was considered and energy release rates were calculated using three-dimensional VCCT(virtual crack closure technique) based on linear elastic fracture mechanics.

Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil (NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어)

  • Baek, Ji-Hye;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.729-738
    • /
    • 2021
  • Feedback flow control using an artificial neural network was numerically investigated for NACA0015 Airfoil to suppress flow separation on an airfoil. In order to achieve goal of flow control which is aimed to reduce the size of separation on the airfoil, Blowing&Suction actuator was implemented near the separation point. In the system modeling step, the proper orthogonal decomposition was applied to the pressure field. Then, some POD modes that are necessary for flow control are extracted to analyze the unsteady characteristics. NARX neural network based on decomposed modes are trained to represent the flow dynamics and finally operated in the feedback control loop. Predicted control signal was numerically applied on CFD simulation so that control effect was analyzed through comparing the characteristic of aerodynamic force and spatial modes depending on the presence of the control. The feedback control showed effectiveness in pressure drag reduction up to 29%. Numerical results confirm that the effect is due to dramatic pressure recovery around the trailing edge of the airfoil.

Stress and Displacement Fields of a Propagating Mode III Crack in Orthotropic Piezoelectric Materials (직교이방성 압전재료에서 전파 하는 모드 III 균열의 응력장과 변위장)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.701-708
    • /
    • 2010
  • The stress and displacement fields of a permeable propagating crack in orthotropic piezoelectric materials under anti-plane shear mechanical load and in-plane electric load are analyzed. The equations of motion for the propagating crack in piezoelectric materials are developed and the solution on the stress and the displacement fields through an asymptotic analysis was obtained. The influences of the piezoelectric constant and of the dielectric permittivity on the stress and displacement fields at the crack tip are explicitly clarified. Using the stress and displacement fields obtained in this study, the characteristics of stress and displacement at a propagating crack tip in piezoelectric materials are discussed.

A Study on the Characteristics of Tropical Cyclone Passage Frequency over the Western North Pacific using Empirical Orthogonal Function (경험적 직교함수를 이용한 북서태평양 열대저기압의 이동빈도 특성에 관한 연구)

  • Choi, Ki-Seon;Kang, Ki-Ryong;Kim, Do-Woo;Hwang, Ho-Seong;Lee, Sang-Ryong
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.721-733
    • /
    • 2009
  • A pattern of tropical cyclone (TC) movement in the western North Pacific area was studied using the empirical orthogonal function (EOF) and the best track data from 1951 to 2007. The independent variable used in this study was defined as the frequency of tropical cyclone passage in 5 by 5 degree grid. The $1^{st}$, $2^{nd}$ and $3^{rd}$ modes were the east-west, north-south and diagonal variation patterns. Based on the time series of each component, the signs of first and second mode changed in 1997 and 1991, respectively, which seems to be related to the fact that the passage frequency was higher in the South China Sea for 20 years before 1990s, and recent 20 years in the East Asian area. When the eigen vectors were negative values in the first and second modes and TC moves into the western North Pacific, TC was formed mainly at the east side relatively compared to the case of the positive eigen vectors. The first mode seems to relate to the pressure pattern at the south of Lake Baikal, the second mode the variation pattern around $30^{\circ}N$, and the third mode the pressure pattern around Japan. The first mode was also closely related to the ENSO and negatively related to the $Ni\tilde{n}o$-3.4 index in the correlation analysis with SST anomalies.

A study on the variations of water temperature and sonar performance using the empirical orthogonal function scheme in the East Sea of Korea (동해에서 경험직교함수 기법을 이용한 수온과 소나성능 변화 연구)

  • Young-Nam Na;Changbong Cho;Su-Uk Son;Jooyoung Hahn
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • For measuring the performance of passive sonars, we usually consider the maximum Detection Range (DR) under the environment and system parameters in operation. In shallow water, where sound waves inevitably interacts with sea surface or bottom, detection generally maintains up to the maximum range. In deep water, however, sound waves may not interact with sea surface or/and bottom, and thus there may exist shadow zones where sound waves can hardly reach. In this situation, DR alone may not completely define the performance of each sonar. For complete description of sonar performance, we employ the concept 'Robustness Of Detection (ROD)'. In the coastal region of the East Sea, the spatial variations of water masses have close relations with DR and ROD, where the two parameters show reverse spatial variations in general. The spatial and temporal analysis of the temperature by employing the Empirical Orthogonal Function (EOF) shows that the 1-st mode represents typical pattern of seasonal variation and the 2-nd mode represents strength variations of mixed layers and currents. The two modes are estimated to explain about 92 % of the variations. Assuming two types of targets located at the depths of 5 m (shallow) and 100 m (deep), the passive sonar performance (DR) gives high negative correlations (about -0.9) with the first two modes. Most of temporal variations of temperature occur from the surface up to 200 m in the water column so that when we assume a target at 100 m, we can expect detection performance of little seasonal variations with passive sonars below 100 m.

Mode III Stress Intensity Factors for Orthotropic Layered Material with Internal Center Crack Under Uniform Anti-Plane Shear Loading (균일한 면외 전단하중을 받는 직교 이방성 적층재 내부 중앙균열의 모드 III 응력세기계수)

  • Lee, Kang-Yong;Joo, Sung-Chul;Kim, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.961-967
    • /
    • 1999
  • A model is constructed to evaluate the mode III stress intensity factor(SIF) for orthotropic three-layered material with a center crack subjected to uniform anti-plane shear loading. A mixed boundary value problem is formulated by Fourier integral transform method and a Fredholm integral equation of the second kind is derived. The integral equation is numerically analyzed to evaluate the effects of the ratio of shear modulus, strength of each layer and crack length to layer thickness on the stress intensity factor.