• Title/Summary/Keyword: 직교배열표

Search Result 167, Processing Time 0.026 seconds

Global Optimization Using a Sequential Algorithm with Orthogonal Arrays in Discrete Space (이산공간에서 순차적 알고리듬(SOA)을 이용한 전역최적화)

  • Cho Bum-Sang;Yi Jeong-Wook;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1369-1376
    • /
    • 2005
  • In structural design, the design variables are frequently selected from certain discrete values. Various optimization algorithms have been developed fDr discrete design. It is well known that many function evaluations are needed in such optimization. Recently, sequential algorithm with orthogonal arrays (SOA), which is a search algorithm for a local minimum in a discrete space, has been developed. It considerably reduces the number of function evaluations. However, it only finds a local minimum and the final solution depends on the initial values of the design variables. A new algorithm is proposed to adopt a genetic algorithm (GA) in SOA. The GA can find a solution in a global sense. The solution from the GA is used as the initial design of SOA. A sequential usage of the GA and SOA is carried out in an iterative manner until the convergence criteria are satisfied. The performance of the algorithm is evaluated by various examples.

실험계획법을 이용한 탄소섬유/페놀수지의 강화 cycle연구

  • Ha, Heon-Seung;Lee, Jin-Yong;Jo, Dong-Hwan;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.514-520
    • /
    • 1993
  • In this paper the cure cycle of carbon fiber/phenolic resin was investigated by the Taguchi Method in an experimental design. Experiments were systematically performed using $L_{18}(2^1 \times 3_7)$ orthorgonal array table of the experimental design. In the experimental design, eight compression molding parameters (heating rate, pressing temperature, pressing rate, molding pressure, curing temperature, dwell time at curing temperature, cooling rate and degassing) were considered and the effects of the parameters on the flexural strength and the apparent porosity of carbon fiber/phenolic composites were investigated. The analysis of variance for the experimental results indicated that molding pressure and curing temperature are the most significant parmeters in the flexural strength and the apparent porosity of carbon fiber/phenolic resin composites, respectively.

  • PDF

Robust Design of a Linear DC Motor Using Taguchi Method (다구찌 방법을 이용한 선형직류모터의 로버스트 설계)

  • 김성수;정수진;리영훈;김동희;노채균
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.51-56
    • /
    • 2001
  • This papper is concerned with robust design of a linear DC motor which is steading fast in OA and FA systems due to simplicity in structure high-speed operation and high-precision positioning. The approach is based on the Taguchi method and utilizes the orthogonal way for design of experiments. In this study, first, the important factors are chosen at first. and then the concept of signal-to-nose(S/N) ratio is allied to evaluate the motor performance and each value of the design parameters is determined. This method is useful to robust design in a short time. As a result, the performance of the motor is improved.

  • PDF

A Study on the Working Condition Effecting on the Maximum Working Temperature and Surface Roughness in Side Wall End Milling Using Design of Experiment (실험계획법을 이용한 엔드밀 가공 시 최대가공온도와 표면조도에 미치는 가공조건에 관한 연구)

  • Hong, Do-Kwan;Ahn, Chan-Woo;Baek, Hwang-Soon;Choi, Seok-Chang;Park, Il-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • To find the working condition is one of the important factors in precision machining. In this study, we analyzed maximum working temperature by infra-red camera and surface roughness in side wall end milling using design of experiment (DOE): RSM(response surface methodology), ANOM(analysis of means) and ANOVA(analysis of variance) by table of orthogonal array. ANOM and ANOVA are well adapted to select sensitivity of design variables for maximum working temperature and surface roughness. The effective design variables and their levels should be determined using ANOM, ANOVA. RSM is presented 2nd order approximation polynomial of maximum working temperature and surface roughness is composed with design variables. Therefore, it is expected that the proposed procedure using design of experiment : table of orthogonal array, ANOM, ANOVA and RSM can be easily utilized to solve the problem of working condition.

  • PDF

Effective Process Parameters on Surface Roughness in Incremental Sheet Metal Forming (점진성형에서 표면거칠기에 영향을 미치는 공정 변수)

  • Lee, Sang-Yoon;Lee, Kyeong-Bu;Kang, Jae-Gwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.66-72
    • /
    • 2014
  • Incremental forming is a relatively novel sheet forming process, in which parts can be formed without the use of dedicated dies. In this paper, the influence of the process parameters (tool diameter, step size, feed rate, existence of a die, forming methods, and kinds of tool path) on surface roughness in the case in which parts are processed by incremental forming was discussed. Al 1050 material is used in the experiments. A table of orthogonal arrays is used to design the experiments and the ANOVA method is employed to statistically analyze the results. The obtained results show that the process parameters of tool diameter, step size, and the existence of a die have a significant effect on the surface roughness, whereas the feed rate, forming methods and kinds of tool path are insignificant.

CAE-based DFSS Study for Road Noise Reduction (로드 노이즈 개선을 위한 전산응용해석 기반 DFSS 연구)

  • Kwon, Woo-Sung;Yoo, Bong-Jun;Kim, Byoung-Hoon;Kim, In-Dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.674-681
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized 95th percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

Optimum Design of Pin Jig to Control Ascent and Descent Offshore Structure Work Table for Weight Reduction (해양구조물 작업대 승하강 조절용 핀지그의 경량화를 위한 최적설계)

  • Hong D.K.;Woo B.C.;Choi S.C.;Park I.S.;Ahn C.W.;Han G.J.;Kang H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1051-1054
    • /
    • 2005
  • On this study, we optimized minimizing the characteristic function for mixed result of the structural contact analysis and the buckling analysis according to the pin jig initial model's level change using mixed the table of orthogonal away and ANOM, Pin jig's weight is reduced up to 20 percent considering constraint conditions. Also we optimized reducing 20 percent weight of pin jig model using topology optimization.

  • PDF

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 판토그라프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1235-1241
    • /
    • 2001
  • Pantograph design process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore Pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings (FW-H) equation is used to calculate the flow induced sound pressure level. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25m away from panhead contact strips. Based on aerodynamic (CFD) and aeroacoustic (FW-H) analysis data, the optimal sizing and positioning ofpanhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. Using a parameter design procedure associated with signal-to-noise (SIN) ratio and sensitivity analysis, an optimal level of design parameters are extracted to minimize the disconnection ratio between contact strips and catenary system, and reduce the far-field aeroacoustic noise.

  • PDF

Two-Stage Design Optimization of an Automotive Fog Blank Cover for Enhancing Its Injection Molding Quality (자동차용 안개등 커버의 사출성형 품질 향상을 위한 2 단계 설계 최적화)

  • Park, Chang-Hyun;Ahn, Hee-Jae;Choi, Dong-Hoon;Pyo, Byung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1097-1103
    • /
    • 2010
  • Injection pressure, an important factor in the filling procedure, should be minimized to enhance injection molding quality. In addition, warping deformation and weld lines, which are representative failures, should be avoided to enhance injection molding quality. To improve injection molding quality, the design procedure for an automotive fog blank cover is divided into two stages. In the first stage, we optimally obtain injection molding process variables that minimize injection pressure and warping deformation by using design of experiments, approximation and optimization techniques equipped in PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration and Design Optimization) tool. Then, we determine the thickness of the automotive fog blank cover that enables us to avoid generating weld lines. The design results we obtain in this study are found far better than those of the initial design, which demonstrates the effectiveness of our design method.

Optimization of Process Time by Peeling of ABS Plating using Design of Experiment (실험계획법(DOE)을 이용한 ABS 도금의 Peeling 향상을 위한 공정 시간 최적설계)

  • Jeon, Seong-Uk;U, Chang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.130-131
    • /
    • 2013
  • 최근 연구에서는 상용 통계분석 프로그램인 Minitab을 사용하여 실험 요소 설계 및 최적 공정조건을 구하는데 많이 이용하고 있다. 본 연구에서는 도금 제품의 Peeling 최적화를 위해 도금 전처리 공정인 에칭 및 화학 니켈 공정 시간을 인자로 설정하였다. 또한 2인자 2수준(2 factor 2 Level)의 직교 배열표를 구성하고 도금 제품의 밀착성을 만족하는 범위 내에서 설계변수에 의한 반응표면법(Response surface analysis)을 사용하여 최적 조건을 설정하였다. 실험 결과, 에칭 및 화학니켈 공정 시간의 주효과도에서 에칭 공정시간이 낮을수록, 화학니켈 공정시간이 높을수록 Peeling 값이 향상된다는 결과를 얻었다. 그리고 최적 조건을 도출하기 위한 방법으로 반응표면 설계법 중의 중심합성법을 사용하여 에칭(10min 15sec)및, 화학니켈(10min 15sec)의 최적 공정 시간을 도출하였다.

  • PDF