• Title/Summary/Keyword: 직결식 궤도

Search Result 3, Processing Time 0.016 seconds

A Study on Reinforcement Method of Concrete Block for Direct Fixation Tracks on Serviced Light Rail Transit (공용중인 경전철 직결 궤도 콘크리트 도상블록의 보강 방안 연구)

  • Jung-Youl Choi;You-Song Kang;Dae-Hee Ahn;Jae-Min Han;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.633-640
    • /
    • 2023
  • In this study, numerical analysis was performed based on field investigation to derive an appropriate reinforcement method by analyzing the displacement behavior characteristics of concrete blocks generated in the direct fixation track on the bridges of the serviced light rail transit. The track of this study was a direct fixation track on a sharp curved track, and the problem of movement of the concrete blocks installed on the bridge deck in the longitudinal and lateral directions occurred. In this study, based on the finite element model using 3D solid elements, the behavior of the direct fixation track that could be occurred under operating load conditions was analyzed. In addition, the reinforcement effect of various reinforcement methods was analyzed. As a result of analyzing the lateral displacement before and after reinforcement, it was analyzed that the maximum lateral displacement after reinforcement under the extreme lateral wheel loads significantly decreased to about 3% (about 0.1mm) compared to before reinforcement. In addition, as a result of examining the generated stress of the filling mortar, bridge decks, and reinforcing bar, it was analyzed that all of them secured a sufficient safety factor of 2.6 or higher, and the optimal conditions for the reinforcement method were derived. Therefore, it is judged that the number of anchoring reinforcements and symmetrical anchor placement reviewed in this study will be effective in controlling the occurrence of lateral displacement of concrete blocks and securing the structural integrity of bridges and concrete blocks.

Analysis of Permanent Deformations in Asphalt Mixtures for Design of Asphalt Trackbed Foundation (철도 노반 설계를 위한 아스팔트 혼합물의 영구변형 특성 분석)

  • Lim, Yujin;Lee, JinWook;Lee, SeongHyeok;Lee, ByeongSik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.123-132
    • /
    • 2014
  • In this study, permanent deformation of asphalt trackbed was investigated by performing repetitive load test on specimen made with dense graded asphalt mixture that was specially prepared for asphalt trackbed foundation. The obtained test results were compared with those computed from the prediction model proposed by AASHTO 2002, called MEPDG. No prediction model adaptable only for permanent deformation of the asphalt trackbed foundation has yet been developed, so the prediction model by AASHTO was adapted in this study to simulate permanent deformation of trackbed foundations in asphalt slab track and in ballasted asphalt track. In order to simulate permanent deformation, a finite element analysis was performed to obtain stresses generated in trackbed due to wheel load. It was found that the predicted permanent deformation was much smaller than the anticipated deformation and that the asphalt track could be stable during the service life of the structure.

Evaluation of Train Running Safety for Direct Fixation Concrete Track on Light Rapid Transit (경전철 직결식 콘크리트 궤도구조의 열차주행안전성 평가)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Chung, Jee-Seung;Lee, Sun-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.41-46
    • /
    • 2017
  • The coefficient of derailment and the rate of wheel load reduction were used as the index of train running safety that was directly affected the train derailment safety. In aspects of track, the train running safety depends on the complex interaction between wheel and rail, and the track-vehicle conditions (i.e., the curvature, cant, track system, vehicle speed and the operation conditions, etc). In this study, the relationship between the train running safety and the track curvature and vehicle speed for direct fixation concrete tracks currently employed in Korean light rapid transit was assessed by performing field tests using actual vehicles running along the service lines. The measured dynamic wheel load, lateral wheel load and lateral displacement of rail head were measured for same train running on four tested tracks under real conditions, which included curved and tangent tracks placed on the tunnel and bridge, thus increasing the train speed by approximately maximum design speed of each test site. Therefore, the measured dynamic track response was applied to the running safety analysis in order to evaluate the coefficient of derailment, the rate of wheel load reduction and the track gauge widening at each test site, and compare with the corresponding Korean train running safety standard. As the results, the lateral track response of direct fixation concrete track appeared to increase with the decreased track curvature; therefore, it was inferred that the track curvature directly affected the train running safety.