• Title/Summary/Keyword: 지형극복

Search Result 194, Processing Time 0.024 seconds

Discussions on the Distribution and Genesis of Mountain Ranges in the Korean Peninsular (II) : The Proposal of 'Sanjulgi-Jido(Mountain Ridge Map)‘ (한국 산맥론(II): 한반도 '산줄기 지도'의 제안)

  • Park Soo Jin;SON ILL
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.3 s.108
    • /
    • pp.253-273
    • /
    • 2005
  • In recent years, there are strong social demands to characterize the spatial distribution of mountains in Korea. This study aims to develop a 'Sanjulgi-Jido(mountain ridge map)' that might be used not only to satisfy these social demands but also to effectively present the spatial distribution of mountains and drainage basins in the Korean Peninsular. The 'Sanjulgi-Jido' developed in this study is a map that presents the continuity of mountains based on the drainage divides that are delineated by a pre-defined drainage basin size and elevation. This study first validated the Bakdudaegan system through the analyses of a digital elevation model. The Bakdudaegan system has long been recognized as the Koreans traditional conceptual framework to characterize the spatial distribution of mountains. The analyses showed that the Bakdudaegan system has several problems to represent the mountain systems in Korea, which includes 1) the lack of the representativeness of drainage basins, 2) inaccuracy to depict the boundary of drainage basins, 3) the lack of representativeness of mountains, and 4) geo-polical issue that confines the spatial extent of mountain systems within the Korean Peninsular. In order to represent the mountains system in a more quantitative manner, we applied several terrain analysis techniques to understand the spatial distribution of mountains and drainage basins. Based on these analyses, we developed an hierarchical system to classify the continuity (If mountains, which are presented as the spatial distribution of drainage divides with a certain elevation. The first-order Sanjulgi is the drainage divides whose drainage basin are bigger than $5,000km^2$ and the point elevation is above 100m. The next order Sanjulgi is delineated as the size of drainage basin is successively divided by two. This kind of design is able to provide a logical framework to present the mountain systems at different details, depending on the purpose and scale of maps. We also provide several empirical functions to calculate various geomorphological indices for each order of Sanjulgi. The 'Sanjulgi Jido' is similar with the Bakdudaegan system, since it characterizes the continuity of mountains based on the spatial distribution of the drainage divide. It, however, has more scientific criteria to define the scale and continuity of mountains. It should be also noted that the 'Sanjulgi Jido' proposed has different logical and methodological background, compared with the mountain range map that explains the genesis of mountain systems in addition to the continuity of mountains.

Modified Traditional Calibration Method of CRNP for Improving Soil Moisture Estimation (산악지형에서의 CRNP를 이용한 토양 수분 측정 개선을 위한 새로운 중성자 강도 교정 방법 검증 및 평가)

  • Cho, Seongkeun;Nguyen, Hoang Hai;Jeong, Jaehwan;Oh, Seungcheol;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.665-679
    • /
    • 2019
  • Mesoscale soil moisture measurement from the promising Cosmic-Ray Neutron Probe (CRNP) is expected to bridge the gap between large scale microwave remote sensing and point-based in-situ soil moisture observations. Traditional calibration based on $N_0$ method is used to convert neutron intensity measured at the CRNP to field scale soil moisture. However, the static calibration parameter $N_0$ used in traditional technique is insufficient to quantify long term soil moisture variation and easily influenced by different time-variant factors, contributing to the high uncertainties in CRNP soil moisture product. Consequently, in this study, we proposed a modified traditional calibration method, so-called Dynamic-$N_0$ method, which take into account the temporal variation of $N_0$ to improve the CRNP based soil moisture estimation. In particular, a nonlinear regression method has been developed to directly estimate the time series of $N_0$ data from the corrected neutron intensity. The $N_0$ time series were then reapplied to generate the soil moisture. We evaluated the performance of Dynamic-$N_0$ method for soil moisture estimation compared with the traditional one by using a weighted in-situ soil moisture product. The results indicated that Dynamic-$N_0$ method outperformed the traditional calibration technique, where correlation coefficient increased from 0.70 to 0.72 and RMSE and bias reduced from 0.036 to 0.026 and -0.006 to $-0.001m^3m^{-3}$. Superior performance of the Dynamic-$N_0$ calibration method revealed that the temporal variability of $N_0$ was caused by hydrogen pools surrounding the CRNP. Although several uncertainty sources contributed to the variation of $N_0$ were not fully identified, this proposed calibration method gave a new insight to improve field scale soil moisture estimation from the CRNP.

A Study on the Application of Other Effective Area-based Conservation Measures(OECMs) for Natural Heritage - Focusing on the Old Big Trees of Natural Monument and Dangsan Ritual - (자연유산의 '기타 효과적인 지역기반 보전수단(OECMs)' 등재기준 적용 연구 - 천연기념물 노거수와 당산제를 중심으로 -)

  • Jun, Da-Seul;Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • This study compared and reviewed the recognition determinants by applying the OECMs criteria, focusing on old big trees, plant of natural monument that are natural heritage under the national heritage system of the Cultural Heritage Administration, and the results are as follows. First, among the protected areas designated and managed by government agencies according to each protection purpose, it is necessary to actively introduce new conservation measures, OECMs, to fulfill the Biodiversity strategy for 2030 while the land area is already saturated. Second, the OECMs are geographically defined areas(CBD, 2018), not currently recognized as a protected areas, governed and managed in a way that achieves positived sustained and effective contribution to in situ conservation of biodiversity. Since the selection of term, the scope of application criteria, and the context of interpretation are inevitably different, it is necessary to separately legislate and establish related laws of the OECMs suitable for each country's situation. Third, as a result of reviewing the OECMs criteria for plant of natural monument, the final 58 potential resources were recognized. Important elements among the OECMs criteria are that buffer zones should be spaced apart from designated zones to secure a certain area, and that economic activities through commercial production should not occur and meet biodiversity standards. Among the potential candidates, 23 areas were analyzed to be geographically isolated and independent, such as Forest of Oriental Arborvitae in Do-dong, Daegu, and forest types such as Carstor Aralia of Gungchon-ri, Samcheok and Forest of Common Camellias in Maryang-ri, Seocheon. As a result of reviewing the application of OECMs criteria for plant of natural monument, it was confirmed that the functions as a traditional uses were specialized among the values of biodiversity, and ecosystem services and cultural and spiritual values were inherited through Korea's unique culture of old big trees and Dangsan ritual. In terms of biodiversity criteria, it can be used as an important factor in connecting human and natural ecosystem networks without the discovery of new species.

Validation of ECOSTRESS Based Land Surface Temperature and Evapotranspiration (PT-JPL) Data Across Korea (국내에서 ECOSTRESS 지표면 온도 및 증발산(PT-JPL) 자료의 검증)

  • Park, Ki Jin;Kim, Ki Young;Kim, Chan Young;Park, Jong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.637-648
    • /
    • 2024
  • The frequency of extreme weather events such as heavy and extreme rainfall has been increasing due to global climate change. Accordingly, it is essential to quantify hydrometeorological variables for efficient water resource management. Among the various hydro-meteorological variables, Land Surface Temperature (LST) and Evapotranspiration (ET) play key roles in understanding the interaction between the surface and the atmosphere. In Korea, LST and ET are mainly observed through ground-based stations, which also have limitation in obtaining data from ungauged watersheds, and thus, it hinders to estimate spatial behavior of LST and ET. Alternatively, remote sensing-based methods have been used to overcome the limitation of ground-based stations. In this study, we evaluated the applicability of the National Aeronautics and Space Administration's (NASA) ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST and ET data estimated across Korea (from July 1, 2018 to December 31, 2022). For validation, we utilized NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data and eddy covariance flux tower observations managed by agencies under the Ministry of Environment of South Korea. Overall, results indicated that ECOSTRESS-based LSTs showed similar temporal trends (R: 0.47~0.73) to MODIS and ground-based observations. The index of agreement also showed a good agreement of ECOSTRESS-based LST with reference datasets (ranging from 0.82 to 0.91), although it also revealed distinctive uncertainties depending on the season. The ECOSTRESS-based ET demonstrated the capability to capture the temporal trends observed in MODIS and ground-based ET data, but higher Mean Absolute Error and Root Mean Square Error were also exhibited. This is likely due to the low acquisition rate of the ECOSTRESS data and environmental factors such as cooling effect of evapotranspiration, overestimation during the morning. This study suggests conducting additional validation of ECOSTRESS-based LST and ET, particularly in topographical and hydrological aspects. Such validation efforts could enhance the practical application of ECOSTRESS for estimating basin-scale LST and ET in Korea.