• Title/Summary/Keyword: 지하 인프라

Search Result 89, Processing Time 0.027 seconds

A User's Location Localization Method using Smartphone Sensor on a Subway (지하철에서 스마트폰 센서를 이용한 사용자 위치 추적 방법)

  • Cho, Jung-Gil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.37-43
    • /
    • 2020
  • Smartphone-based localization has been widely studied in many different scenarios. But as far as we know, few work has addressed the problem of localization in underground public transportation systems, where GPS signal and wireless infrastructure are not always available. Knowing the location of a train is necessary to develop a useful service for subway passengers. And so, estimation of motion state and stop station by using sensors on a smartphone is being studied for subway passengers. This paper proposes a localization method that uses a barometer and a magnetic sensor on a smartphone. The method proposed in this paper first estimates whether the train runs or stops according to the change in air pressure and the strength of the magnetic field. The altitude value and the magnetic field value are then used to estimate the exact stop station of the train. We evaluated the proposed method using data from the Seoul's subway line 5. Compared with previous methods, the proposed method achieves higher accuracy.

Estimation of Average Low Flow Using Base Flow Index for Ungaged Basin (기저유량비를 이용한 미계측 유역의 평균 갈수량 산정)

  • Lee, Si Yoon;Kim, Chi Young;Lee, Jong so;Kim, Hung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.415-420
    • /
    • 2017
  • 유량자료는 연속적으로 관측하기가 쉽지 않을 뿐 아니라 모든 관측소에서 매년 적정한 유량자료를 생산하는 것 또한 매우 어려운 실정이다. 이에 따라 미계측 유역에 대한 유량 산정을 위해 많은 연구가 진행되고 있다. 영국의 "Low Flow Studies report(Institute of Hydrology, 1980)"에서는 갈수량 산정과 관련하여 기저유량비(Base Flow Index, BFI)를 사용하는 것을 추천하였다. 국내에서는 이와 관련한 적용 사례가 없기 때문에 본 연구에서는 BFI를 적용하여 미계측 유역의 갈수량을 산정하고자 하였다. 대상유역은 낙동강 권역의 22개 지점을 대상으로 실시하였으며, 기저유량비 및 평균 갈수량과 유역 및 수문인자들의 상관분석을 수행하였다. 분석을 통하여 기저유량비는 토양군 C와 지하수위를 독립변수로, 평균 갈수량은 기저유량비, 유역면적, 강수량을 독립변수로 선정하여 회귀분석을 실시하였다. 그 결과 개발한 기저유량비 지역회귀모형의 상대오차는 -26.5%(기계2)~57.2%(구영)의 범위로 분포하였고, 절대오차의 평균은 17.2%로 산정되었다. 평균 갈수량 지역회귀모형은 상대오차가 -38.4%(도천)~184.4%(길안)의 범위에서 분포하고 있으며, 절대오차의 평균은 47.3%이다. 그러나 소토, 기계2, 길안 지점을 제외하면 절대오차는 30.6%이다. 상대오차는 다소 부정적이지만 기존에 개발된 지역회귀모형으로 평균 갈수량을 산정한 결과와 비교하면 상대적으로 양호한 것으로 판단된다. 사용한 자료의 기간이 6년으로 통계적인 결과로 보기에는 다소 미흡한 측면이 있지만, 유역인자로서 BFI가 미계측 유역의 갈수량 특성을 설명할 수 있는 우수한 인자라고 판단하였다.

  • PDF

Prediction of Disk Cutter Wear Considering Ground Conditions and TBM Operation Parameters (지반 조건과 TBM 운영 파라미터를 고려한 디스크 커터 마모 예측)

  • Yunseong Kang;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.143-153
    • /
    • 2024
  • Tunnel Boring Machine (TBM) method is a tunnel excavation method that produces lower levels of noise and vibration during excavation compared to drilling and blasting methods, and it offers higher stability. It is increasingly being applied to tunnel projects worldwide. The disc cutter is an excavation tool mounted on the cutterhead of a TBM, which constantly interacts with the ground at the tunnel face, inevitably leading to wear. In this study quantitatively predicted disc cutter wear using geological conditions, TBM operational parameters, and machine learning algorithms. Among the input variables for predicting disc cutter wear, the Uniaxial Compressive Strength (UCS) is considerably limited compared to machine and wear data, so the UCS estimation for the entire section was first conducted using TBM machine data, and then the prediction of the Coefficient of Wearing rate(CW) was performed with the completed data. Comparing the performance of CW prediction models, the XGBoost model showed the highest performance, and SHapley Additive exPlanation (SHAP) analysis was conducted to interpret the complex prediction model.

Study on the structure of the articulation jack and skin plate of the sharp curve section shield TBM in numerical analysis (수치해석을 통한 급곡선 구간 Shield TBM의 중절잭 및 스킨플레이트 구조에 관한 연구)

  • Kang, Sin-Hyun;Kim, Dong-Ho;Kim, Hun-Tae;Song, Seung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.421-435
    • /
    • 2017
  • Recently, due to the saturation of ground structures and the overpopulation of pipeline facilities requires to development of underground structures as an alternative to ground structures. Thus, mechanized tunnel construction of the shield TBM method has been increasing in order to prevent vibration and noise problems in construction of the NATM tunnel for the urban infrastructure construction. Tunnel construction plan for the tunnel line should be formed in a sharp curve to avoid building foundation and underground structures and it is inevitable to develop a shield TBM technology that suits the sharp curve tunnel construction. Therefore, this study is about the structural stability technology of the articulation jack, shield jack and skin plate for the shield TBM thrust in case of the mechanized tunnel construction that is a straight and sharp curve line. The construction case study and shield TBM operation principle are examined and analyzed by the theoretical approach. The torque of the cutter head, the thrust of the articulation jack and the shield jack, the amount of over cutting for curve is important respectively in shield TBM construction of straight and sharp curve line. In addition, it is very important to secure the stability of the skin plate structure to ensure the safety of the inside worker. This study examines the general structure and construction of the equipment, experimental simulation was carried out through numerical analysis to examine the main factors and structural stability of the skin plate structure. The structural stability of the skin plate was evaluated and optimizes the shape by comparing the loads of the articulation jack by selecting the virtual soil to be applied in a straight and sharp curve line construction. Since the present structure and operation method of the shield TBM type in domestic constructions are very similar, this study will help to develop the localized shield TBM technology for the new equipment and the vulnerability and stability review.

A Numerical Study on the Effect of Pressure Relief Ducts on the Normal Pressure in a Preliminary Design of Honam-Jeju Subsea Tunnel (호남-제주 해저터널 가상설계의 공기압력 제어 덕트가 열차 주행에 미치는 영향에 대한 수치해석 연구)

  • Seo, Sangyeon;Ha, Heesang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.17-27
    • /
    • 2016
  • High-speed trains have been developed widely in European countries and Japan in order to transport large quantity of people and commodities in short time. Additionally, a high speed train is one of the most desirable and environmentally friendly transportation methods. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Due to this aerodynamic pressure against the train, a large amount of traction is required for the operation of a train in a tunnel. Therefore, it is essential to incorporate a pressure relief system in a tunnel in order to reduce aerodynamic resistance caused by a high-speed train. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate positive and negative normal pressures acting on a train. One-dimensional numerical simulations were carried out in order to estimate the effect of pressure relief systems.

Performance of Feature-based Stitching Algorithms for Multiple Images Captured by Tunnel Scanning System (터널 스캐닝 다중 촬영 영상의 특징점 기반 접합 알고리즘 성능평가)

  • Lee, Tae-Hee;Park, Jin-Tae;Lee, Seung-Hun;Park, Sin-Zeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.30-42
    • /
    • 2022
  • Due to the increase in construction of tunnels, the burdens of maintenance works for tunnel structures have been increasing in Korea. In addition, the increase of traffic volume and aging of materials also threatens the safety of tunnel facilities, therefore, maintenance costs are expected to increase significantly in the future. Accordingly, automated condition assessment technologies like image-based tunnel scanning system for inspection and diagnosis of tunnel facilities have been proposed. For image-based tunnel scanning system, it is key to create a planar image through stitching of multiple images captured by tunnel scanning system. In this study, performance of feature-based stitching algorithms suitable for stitching tunnel scanning images was evaluated. In order to find a suitable algorithm SIFT, ORB, and BRISK are compared. The performance of the proposed algorithm was determined by the number of feature extraction, calculation speed, accuracy of feature matching, and image stitching result. As for stitching performance, SIFT algorithm was the best in all parts of tunnel image. ORB and BRISK also showed satisfactory performance and short calculation time. SIFT can be used to generate precise planar images. ORB and BRISK also showed satisfactory stitching results, confirming the possibility of being used when real-time stitching is required.

Application of Multiple Linear Regression Analysis and Tree-Based Machine Learning Techniques for Cutter Life Index(CLI) Prediction (커터수명지수 예측을 위한 다중선형회귀분석과 트리 기반 머신러닝 기법 적용)

  • Ju-Pyo Hong;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.594-609
    • /
    • 2023
  • TBM (Tunnel Boring Machine) method is gaining popularity in urban and underwater tunneling projects due to its ability to ensure excavation face stability and minimize environmental impact. Among the prominent models for predicting disc cutter life, the NTNU model uses the Cutter Life Index(CLI) as a key parameter, but the complexity of testing procedures and rarity of equipment make measurement challenging. In this study, CLI was predicted using multiple linear regression analysis and tree-based machine learning techniques, utilizing rock properties. Through literature review, a database including rock uniaxial compressive strength, Brazilian tensile strength, equivalent quartz content, and Cerchar abrasivity index was built, and derived variables were added. The multiple linear regression analysis selected input variables based on statistical significance and multicollinearity, while the machine learning prediction model chose variables based on their importance. Dividing the data into 80% for training and 20% for testing, a comparative analysis of the predictive performance was conducted, and XGBoost was identified as the optimal model. The validity of the multiple linear regression and XGBoost models derived in this study was confirmed by comparing their predictive performance with prior research.

Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results (터널 현장 계측결과를 통한 강관보강 그라우팅의 거동 메커니즘)

  • Shin, Hyunkang;Jung, Hyuksang;Lee, Yong-joo;Kim, Nag-young;Ko, Sungil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.133-149
    • /
    • 2021
  • This study aims to report the behavioral mechanism of steel pipe reinforcement grouting, which is being actively used to ensure the stability of the excavation surface during tunnel excavation, based on measurements taken at the actual site. After using a 12 m steel pipe attached with a shape displacement meter and a strain gauge to reinforce the actual tunnel surface, behavioral characteristics were identified by analyzing the measured deformation and stress of the steel pipe. Taking into account that the steel pipes were overlapped every 6 m, the measured data up to 7 m of excavation were used. In addition, the behavioral characteristics of the steel pipe reinforcement according to the difference in strength were also examined by applying steel pipes with different allowable stresses (SGT275 and SGT550). As a result of analyzing the behavior of steel pipes for 7 hours after the first excavation for 1 m and before proceeding with the next excavation, the stress redistribution due to the arching effect caused by the excavation relaxation load was observed. As excavation proceeded by 1 m, the excavated section exhibited the greatest deformation during excavation of 4 to 6 m due to the stress distribution of the three-dimensional relaxation load, and deformation and stress were generated in the steel pipe installed in the ground ahead of the tunnel face. As a result of comparing the behavior of SGT275 steel pipe (yield strength 275 MPa) and SGT550 steel pipe (yield strength 550 MPa), the difference in the amount of deformation was up to 18 times and the stress was up to 12 times; the stronger the steel pipe, the better it was at responding to the relaxation load. In this study, the behavior mechanism of steel pipe reinforcement grouting in response to the arching effect due to the relaxation load was identified based on the measured data during the actual tunnel excavation, and the results were reported.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.