• Title/Summary/Keyword: 지하 원유비축

Search Result 15, Processing Time 0.023 seconds

지하원유저장 공동주위 암반의 변형거동 특성에 따른 지하수 유동해석

  • 장근무;이정인
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1994.03a
    • /
    • pp.38-51
    • /
    • 1994
  • 지하원유비축 기지 저장공동의 원유 유출이나 기화누설을 방지하기 위하여 지하수압을 조절하는 수벽공의 운영이나 공동주위 암반의 그라우팅 공법 설계에 있어서는 공동의 굴착으로 인한 주위 암반의 변형에 따른 투수계수의 변화와 지하수위의 변화에 대한 해석이 대단히 중요하다. 본 연구에서는 순간증압법을 이용한 삼축압축하의 암석의 투수계수 측정을 통하여 변형율과 투수계수와의 관계함수식을 구하였다. (중략)

  • PDF

Groundwater Flow Characteristics Affected by the Seawater Intrusion near Simulated Underground Storage Caverns in the Coastal Area (임해지역의 모의 지하 비축 시설 주변에서 해수 침투에 의한 지하수 유동 특성)

  • 황용수;배현숙;서동일;김경수;김천수
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.17-29
    • /
    • 1999
  • There are three major processes to impact the groundwater flow near underground storage caverns in the coastal area; effect of topography, effect of sea water intrusion, and effect of excavation. In this paper, the effects of three items were numerically studied to identify the major cause for altering the flow pattern. It turned out that the excavation is the most significant effect on the groundwater flow system. The groundwater pressure distributions and consequent groundwater pathways were significantly altered near the openings. By increasing the groundwater pressures from water curtain holes, the potential leakage of storage cavern was properly prevented

  • PDF

In-situ Rock Stress Measurement at the Water Tunnel Sites in the OO Oil Storage Facility with Hydraulic Fracturing Method (수압파쇄법을 이용한 OO 원유비축시설 내 수벽 터널에서의 초기응력 측정)

  • Bae, Seong-Ho;Kim, Jae-Min;Kim, Jang-Soon;Lee, Young-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • The influence of in-situ rock stress on the stability of an underground rock structure increases as the construction depth become deeper and the scale of a rock structure become larger. In general, hydraulic fracturing stress measurement has been performed in the surface boreholes of the target area at the design stage of an underground structure. However, for some areas where the high horizontal stresses were observed or where the overstressed conditions caused by topographical and geological factors are expected, it is desirable to conduct additional in-situ stress measurement in the underground construction site to obtain more detailed stress information for ensuring the stability of a rock structure and the propriety of current design. The study area was a construction site for the additional underground oil storage facility located in the south-east part of OO city, Jeollanam-do. Previous detailed site investigation prior to the design of underground structures revealed that the excessive horizontal stress field with the horizontal stress ratio(K) greater than 3.0 was observed in the construction area. In this study, a total of 13 hydraulic fracturing stress measurements was conducted in two boreholes drill from the two water tunnel sites in the study area. The investigation zone was from 180 m to 300 m in depth from the surface and all of the fracture tracing works were carried out by acoustic televiewer scanning. For some testing intervals at more than 200 m ind depth from surface, the high horizontal stress components the horizontal stress ratio(K) greater than 2.50 were observed. And the overall investigation results showed a good agreement with the previously performed test.

Underground Space Development and Strategy in Korea (국내 지하공간 개발 및 대책)

  • Shin, Hee-Soon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.327-336
    • /
    • 2013
  • Approximately 70% of the Korean peninsula is composed of mountains, around 99,274 $km^2$. Even worse, population rate of Korea is the No.3 in the world now. Accordingly, it is necessary to develop the potential underground space actively with the concept of another territory to be utilized. The development of underground space should be considered not a choice but an indispensable issue. Since 1970s, many large-scale underground structures have been constructed like as crude-oil storage bins, liquefied petroleum gas storage caverns, and underground pumped storage powerplants. Also, In urban area, the underground facilities such as subway networks, underground shopping mall, underground pedestrian network, electric power tunnels, and car parking lots have been used extensively. The scale of Yeosu oil and gas underground storage facility and Seoul subway systems are one of the massive scale in the world. Recently, the trend of the development of underground space becomes more diverse and larger scale. The current status of Korean underground space developments and strategy are described in this paper.

Elasto-viscoplastic Dynamic Analysis of Subterranean Storage Cavern for Petroleum Reserve (석유비축을 위한 지하저장공동의 탄.점소성 동적해석)

  • 진지섭;김수석
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 1989
  • In recent times, the subterranean caverns for storing crude oils and oil products are increasingly needed. The elasto-VIScoplastic DYNamic finite element analysis program(VISDYN) has been developed in order to investigate dynamic responses of the storage cavity. And validity of the program is studied through a numerical example. Mohr-Coulomb yield criterion is adopted and associated flow rule is assumed. Geometrically nonlinear behaviour is taken into account using a total Lagrangian formulation. In dynamic deformation reponses, the difference between the steady state displacements and the unsteady state ones by the static analysis can be neglected.

  • PDF

Relationship between Hydrochemical Variation of Groundwater and Gas Tigtness in the Underground Oil Storage Caverns (지하원유비축기지 공동주변 지하수의 수질화학적 변화와 기밀성과의 관계)

  • Jeong Chan Ho
    • The Journal of Engineering Geology
    • /
    • v.14 no.3 s.40
    • /
    • pp.259-272
    • /
    • 2004
  • The purpose of this study is to investigate the effect of hydrochemical variation of groundwater on the gas tigtness in an unlined oil storage cavern. The groundwater chemistry is greatly influenced by the seawater mixing, the water curtain and the dissolution of grounting cements. The chemical composition of groundwater greatly varies ac-cording to both the location of monitoring wells and the sampling period. Most of groundwater shows alkaline pH and high electrical conductivity. The chemical types of groundwater show the dominant order as follows : Na-Cl type > Ca-Cl type > $Ca-HCO_3(CO_3)$ type. Thermodynamic equilibrium state between chemical composition of groundwater and major minerals indicates that carbonate minerals except clay minerals can be precipitated as a secondary mineral. It means that the secondary precipitates can not greatly exerts the clogging effect into fracture aperture in rock mass around oil storage cavern. The content of total organic carbon (TOC) shows a slightly increasing trend from initial stage to late stage. The $EpCO_2$ was computed so as to assess the gas contribution on the $CO_2$ in groundwater. The $EpCO_2$ of 0$\~$41.3 indicates that the contribution of oil gas on $CO_2$ pressure in groundwater system can be neglected.

Investigation and Design of Underground Cavern for Oil Storage in Korea (국내 원유 비축 지하공동의 조사 및 설계 사례)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.190-198
    • /
    • 1992
  • This study is to summarize the contents for the investigation and design of the construction for oil storage. Since underground caverns are large scale, in their construction one should consider the mechanical stability of caverns and the economic view of construction. On the basis of them, cavern's section and layout were determined and water curtains were designed to maintain hydraulic equilibrium so that gases were sealed tightly. Also the supporting criterial for rock bolt and stotcrete were determined by means of the classification of rock masses and the results of finite element method. The criteria of grouting reinforcement were presented according to the results of injection test in the pilot holes of working face.

  • PDF

Hydrogeological Stability Study on the Underground Oil Storage Caverns by Numerical Modeling (수치모델링을 이용한 지하원유비축시설의 수리지질학적 안정성 연구)

  • 김경수;정지곤
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.35-51
    • /
    • 2002
  • This study aims to establish the methodology for design of an optimum water curtain system of the unlined underground oil storage cavern satisfying the requirements of hydrodynamic performance in a volcanic terrain of the south coastal area. For the optimum water curtain system in the storage facility, the general characteristics of groundwater flow system in the site are quantitatively described, i.e. distribution of hydraulic gradients, groundwater inflow rate into the storage caverns, and hydrogeologic influence area of the cavern. In this study, numerical models such as MODFLOW, FracMan/MAFIC and CONNECTFLOW are used for calculating the hydrogeological stability parameters. The design of a horizontal water curtain system requires considering the distance between water curtain and storage cavern, spacing of the water curtain boreholes, and injection pressure. From the numerical simulations at different scales, the optimum water curtain systems satisfying the containment criteria are obtained. The inflow rates into storage caverns estimated by a continuum model ranged from about 120 m$^3$/day during the operation stage to 130~140m$^3$/day during the construction stage, whereas the inflow rates by a fracture network model are 80~175m$^3$/day. The excavation works in the site will generate the excessive decline of groundwater level in a main fracture zone adjacent to the cavern. Therefore, the vertical water curtain system is necessary for sustaining the safe groundwater level in the fracture zone.

A Case Study on the Occurrence and Solution of Stability problems around Large Underground Storage Cavern in Highly Stressed Rock Mass (과지압 암반내 대규모 지하공동 안정성 문제 및 대책)

  • Lee, Dae-Hyuck;Lee, Hee-Suk;Park, Yeon-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.622-640
    • /
    • 2009
  • 원유 비축기지 저장공동과 같이 상하로 긴 형상의 대규모 공동에서 횡방향의 지압이 과도하게 작용하면 천정부의 응력집중과 측벽의 암반 변위가 과도하게 발생하여 저장공동의 불안정 요인이 된다. 특히 지압의 절대 크기가 암반 강도의 일정 비율 이상이 되면 응력 집중에 의한 암반의 취성 파괴를 유발하고, 이러한 현상은 터널 굴착 시 발생하는 파괴음(popping)과, 굴착면에 평행한 형태로 암편이 탈락하는 취성파괴(spalling) 현상을 동반한다. 이 글에서는 대규모 지하저장공동 굴착시 실제 발생한 과지압으로 인한 문제 사례에 대해 소개한다. 저장공동 굴착시 관찰된 암편 및 숏크리트 탈락과 균열 발생 현상을 관찰하고 암반 계측결과 분석을 통해 과지압의 현상을 진단하였다. 과지압 구간의 현재 상태 및 원안 설계안에 대해 연속체 및 불연속체 안정성 해석을 실시하여 문제의 심각성을 평가하였다. 이를 통해 굴착 형상 변경 및 특수 보강 방안을 제안하였으며 제안된 안의 보강효과에 대한 수치해석 평가 결과를 재검토 하였다. 이들 결과를 종합하여 과지압구간 보강안을 도출하였으며 상시 안정성 감시 대책으로 현장 암반의 미소파괴음 계측 방안을 제시하였다.

  • PDF