• Title/Summary/Keyword: 지하

Search Result 9,218, Processing Time 0.034 seconds

Feasibility Assessment on the Application of X-ray Computed Tomography on the Characterization of Bentonite under Hydration (벤토나이트 수화반응 특성화를 위한 X선 단층촬영 기술 적용성 평가)

  • Melvin B., Diaz;Gyung Won, Lee;Seohyeon, Yun;Kwang Yeom, Kim;Chang-soo, Lee;Minseop, Kim;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.491-501
    • /
    • 2022
  • Bentonite has been proposed as a buffer and backfill material for high-level radioactive waste repository. Under such repository environment conditions, bentonite is subjected to combined thermal, hydrological, mechanical, and chemical processes. This study evaluates the feasibility of applying X-ray CT technology on the characterization of bentonite under hydration conditions using a newly developed testing cell. The cylindrical cell is made of platic material, with a removable cap to place the sample, enabling to apply vertical pressure on the sample and to measure swelling pressure. The hydration test was carried out with a sample made of Gyeonju bentonite, with a dry density of 1.4 g/cm3, and a water content of 20%. The sample had a diameter of 27.5 mm and a height of 34 mm. During the test, water was injected at a constant pressure of 0.207 MPa, and lasted for 7 days. After one day of hydration, bentonite swelled and filled out the space inside the cell. Moreover, CT histograms showed how the hydration process induced an initial increase and later progressive decrease on the density of the sample. Detailed profiles of the mean CT value, CT standard deviation, and CT gradient provided more details on the hydration process of the sample and showed how the bottom and top regions exhibited a decrease on density while the middle region showed an increase, especially during the first two days of hydration. Later, the differences in CT values with respect to the initial state decreased, and were small at the end of testing. The formation and later reduction of cracks was also characterized through CT scanning.

Estimation of the CY Area Required for Each Container Handling System in Mokpo New Port (목표 신항만의 터미널 운영시스템에 따른 CY 소요면적 산정에 관한 연구)

  • Keum, J.S.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 1998
  • The CY can be said to function in various respect as a buffer zone between the maritime and overland inflow-outflow of container. The amount of storage area needed requires a very critical appraisal at pre-operational stage. A container terminal should be designed to handle and store containers in the most efficient and economic way possible. In order to achieve this aim it is necessary to figure out or forecast numbers and types of containers to be handled, CY area required, and internal handling systems to be adopted. This paper aims to calculate the CY area required for each container handling system in Mokpo New Port. The CY area required are directly dependent on the equipment being used and the storage demand. And also the CY area required depends on the dwell time. Furthermore, containers need to be segregated by destination, weight, class, FCL(full container load), LCL(less than container load), direction of travel, and sometimes by type and often by shipping line or service. Thus the full use of a storage area is not always possible as major unbalances and fluctuations in these flow occuring all the time. The calculating CY area must therefore be taken into account in terms of these operational factors. For solving such problem, all these factors have been applied to estimation of CY area in Mokpo New Port. The CY area required in Mokpo New Port was summarized in the conclusion section.

  • PDF

Wetting-Induced Collapse in Fill Materials for Concrete Slab Track of High Speed Railway (고속철도 콘크리트궤도 흙쌓기재료의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.79-88
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in bout 400 km section in 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350 km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing (Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, focusing on various soil/rock type, stress levels, wetting condition more closely.

Appropriate Cold Treatment Periods and Shading Levels on Codonopsis lanceolata for Plug Seedling Production in Summer Season (더덕 플러그묘의 하절기 생산을 위한 적정 저온처리 기간과 차광 수준)

  • Eun Won Park;Jeong Hun Hwang;Hee Sung Hwang;Hyeon Woo Jeong;So Yeong Hwang;Jin Yu;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.157-164
    • /
    • 2023
  • Codonopsis lanceolata (S. et Z.) Trautv. is mainly cultivated in Korea and China as a medicinal crop. C. lanceolata is difficult to produce plug seedlings in the summer, because C. lanceolata has a low germination rate and is vulnerable to high temperatures. Cold treatment is effective in breaking dormancy of seeds and increasing the germination rate. Shading cultivation can control the solar irradiance received by plants and reduce the damage by high temperatures and strong light. This study was conducted to examine the appropriate cold treatment period for the improving germination of C. lanceolata, and shading level during the summer seedling period. Cold treatment experiments were conducted for 0 (control), 1, 2, 3, and 4 weeks at 4℃ before sowing. In the shading experiment, C. lanceolata was grown for 45 days with 0 (non-treatment), 45, 75% shading levels. Cold treatment for one week significantly improved the germination energy. The plant height, leaf area, and fresh and dry weights of C. lanceolata seedlings were significantly increased under the 45% shading level. Total root length, root surface area, and the number of root tips were significantly higher in shading treatment (45 and 75%) than in non-treatment. The C. lanceolata seedling's compactness and Dickson's quality index were the highest at 45% shading level. Therefore, these results recommended sowing C. lanceolata after cold treatment for one week at 4℃, and 45% shading level could stably culture C. lanceolata plug seedlings during the high temperature period.

Characteristics and Status of Roof Tile Buildings of Pungnaptoseong Fortress (풍납토성 기와건물지의 성격과 위상)

  • SO Jaeyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.46-59
    • /
    • 2023
  • Various Baekje ground-level building sites have been identified, in Pungnaptoseong Fortress, including Mirae Village's site E-1. However, building site E-1 is the only one with excavated roof tiles that are directly connected to the building site. As for building sites E-2, D-1, and D-2, which are comparable to site E-1, it is very possible that they had tiles on the roof based on their jeoksim (blocking facilities for roof slopes) and building structures. Also, although they are semi-underground pit structures, pit building sites A-30 and modern apartment site A-5, as well as the No.44 remains of Gyeongdang District, which is closer to a ground-level type, the buildings with tiles may have been constructed in the form of partial tile roofs rather than full-face tile roofs. Therefore, there may be several reasons behind the use of tiles on roofs in the early days, but the primary background of the building's authoritative function would have been considered first. Considering that China and Japan started using tiles on nationally important buildings such as palaces, temples, and ritual buildings, it may be presumed that Baekje began using tiles from the time it centralized power. It is believed that Baekje's early roof tile buildings evolved from rudimentary residential architecture to advanced public architecture, taking into consideration fire prevention and structural stability in large buildings. It is difficult to find similar cases in Korea with structural features such as the elevated foundations or underground stone foundations that can be found in Mirae Village building site E-1. Rather, similar architectural techniques can be found in China and Japan. In China, similar construction techniques were discovered in buildings of worship that were primarily built in the palace surroundings, such as Jangan Castle. Based on this, it appears that roof tile building sites, such as site E-1, that have been discovered have a strong correlation with the characteristics of buildings of worship, and ground type buildings, such as sites D-1 and D-2, are important facilities that are related to important public facilities such as state-run warehouses. This provides many implications regarding the early Baekje city structure.

Test of Independence Between Variables to Estimate the Frequency of Damage in Heat Pipe (열수송관 파손빈도 추정을 위한 변수간 독립성 검정)

  • Myeongsik Kong;Jaemo Kang;Sungyeol Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.61-67
    • /
    • 2023
  • Heat pipes located underground in urban areas and operated under high temperature and pressure conditions can cause large-scale human and economic damage if damaged. In order to predict damage in advance, damage and construction information of heat pipe are analyzed to derive independent variables that have a correlation with frequency of damage, and a simple regression analysis modified model using each variable is applied to the field. However, as the correlation between independent variables applied to the model increases, the independence between variables is harmed and the reliability of the model decreases. In this study, the independence of the pipe diameter, burial depth, insulation level of monitoring system, and disconnection or short circuit of the detection line, which are judged to be interrelated, was tested to derive a method for combining variables and setting categories necessary to apply to the frequency of damage estimation model. For the test of independence, the continuous variables pipe diameter and burial depth were each converted into three categories, insulation level of monitoring system was converted into two categories, and the categorical variable disconnection or short circuit of the detection line status was kept as two categories. As a result of the test of independence, p-value between pipe diameter and burial depth, level of monitoring system and disconnection or short circuit of the detection line was lower than the significance level (α = 0.05), indicating a large correlation between them. Therefore, the pipe diameter and burial depth were combined into one variable, and the categories of the combined variable were set to 9 considering the previously set categories. The insulation level of monitoring system and the disconnection or short circuit of the detection line were also combined into one variable. Since the insulation level is unreliable when the detection line status is disconnection or short circuit, the categories of the combined variable were set to 3.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Effects of Cutting Condition on Quality of Nursery Plant and Fruit Yield in 'Sulhyang' Strawberry (삽목 조건이 '설향' 딸기의 묘소질 및 과실 수량에 미치는 영향)

  • Sang Woo Lee;Yong Hyuk Lee;Jeum Kyu Hong;Sung Hwan Choi;Soo Jeong Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.405-415
    • /
    • 2023
  • This study was conducted to investigate optimal conditions for cutting propagation of the strawberry cultivar "Sulhyang" through the collection methods of cuttings (runners tips), leaf number of cuttings, and cutting time. Cuttings were collected from the mother plant in the nursery bed (MP) and plants after fruit harvest (HP); the leaf number of cuttings was 0, 1, and 2, and the cutting time was at one-week intervals from June 4 to July 9. The survival rates for MP and HP cuttings were notably high, reaching 99.5% and 98.7%, respectively, but no significant difference was found. The number of roots were higher in MP cuttings, and there was no significant difference in crown and leaf growth. The fruit yields were 419.2 and 428.4 g, for MP and HP cuttings, respectively. The survival rates according to leaf number of cuttings were 98.1% and 98.3% for 1 and 2 remaining leaves, respectively, and remarkably lower at 25.3% for no remaining leaves. The root numbers were 26.0 and 26.3 for 1 and 2 remaining leaves, respectively, compared with 23.5 for no remaining leaves, with no significant differences in crown and leaf growth. The fruit yields were 424.4 and 421.5 g for 1 and 2 remaining leaves, respectively, and 396.7 g for no remaining leaves. The survival rates according to cutting time was over 97.2% in all cutting time without any difference in each treatment. The root, shoot, and crown of the nursery plant before planting showed the best growth in the cuttings on June 4 and 11, resulting in the highest fruit yields of 433.3 and 426.4 g, respectively, with the lowest yields at 384.5 g for cutting time on July 9. Both MP and HP materials proved suitable for strawberry cuttings. The optimal leaf number for cuttings was at least 1, and the optimal cutting time in Gyeongnam area was evaluated as around June 4-11.

Comparison and Analysis of Field Hydraulic Tests to Evaluate Hydraulic Characteristics in Deep Granite Rockmass (심부 화강암반의 수리특성 평가를 위한 현장수리시험 비교 및 해석 연구)

  • Dae-Sung Cheon;Heejun Suk;Seong Kon Lee;Tae-Hee Kim;Ki Seog Kim;Seong-Chun Jun;SeongHo Bae
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.393-412
    • /
    • 2024
  • In selecting a disposal site for high-level radioactive waste, the hydrogeological research of the site is very important, and the hydraulic conductivity and the storage coefficient are key parameters. In this study, the hydraulic conductivity obtained by two different types of field hydraulic test equipment and methods was compared and analyzed for the deep granite rockmass in the Wonju area to understand the hydraulic characteristics of the deep granite rockmass. One was to perform the lugeon test, constant pressure injection test, and slug test at a maximum depth of 602.0 m by using the auto pressure/flow injection system, and the calculated hydraulic conductivity ranged from 1.26E-9 to 4.16E-8 m/s. In the overall depth, the maximum and minimum differences of the hydraulic conductivity were found to be about 33 times, and in the same test section, the difference by test method or analysis method was 1.13 to 8.25 times. In the other, the hydraulic conductivity calculated by performing a constant pressure injection test and a pulse test at a maximum depth of 705.1 m using the deep borehole hydraulic testing system was found to be 1.60E-10 to 2.05E-8 m/s, and the maximum and minimum differences were found to be about 130 times. In the constant pressure injection test, the difference depending on the analysis method was found to be 1.02 to 2.8 times. The hydraulic conductivity calculated by the two test equipment and methods generally showed similar ranges as E-9 and E-8 m/s, and no clear trend was observed according to depth. It was found that the granite rockmass in the Wonju area where the field hydraulic test was conducted showed low or very low rockmass permeability, and although there are differences in the range of hydraulic conductivity and the depth of application that can be measured depending on the applied test equipment and test method, it is generally believed that reliable results were presented.

A Study on Hydrogeological Characteristics of Deep-Depth Rock Aquifer by Rock Types in Korea (국내 암종별 고심도 암반대수층 수리지질특성 연구)

  • Hangbok Lee;Chan Park;Dae-Sung Cheon;Junhyung Choi;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.374-392
    • /
    • 2024
  • In order to successfully select a site for deep geological disposal of high-level radioactive waste, it is important to perform the stepwise approach along with the systematic selection and survey of evaluation parameters of geological environmental characteristics suitable for the domestic geological environment. In this study, we evaluated the characteristics of hydraulic conductivity, which is considered the most important evaluation parameter in the field of hydrogeology, targeting a deep-depth rock aquifer where actual disposal facilities are expected to be located. In particular, for the first time in Korea, we obtained in-situ pressure-flow data by directly conducting hydraulic tests in boreholes at depths ranging from 500 m to 750 m in various rock types distributed in Korea (granite/volcanic rock/gneiss/mudstone). And we derived hydraulic conductivity values by rock types and depth using verified analytical methods. For this purpose, precision hydraulic testing equipment developed in-house through this study was used, and detailed investigation procedures based on standard test methods were applied to field tests. As a result of the analysis, the average hydraulic conductivity value was found to be in the range of 10-9 m/s in all granite/volcanic rock/gneiss areas. In the mudstone area, an average hydraulic conductivity value of 10-11 m/s was derived, which was about 100 times (2 orders of magnitude) lower than that of the fractured rock aquifers. Moreover, permeability tended to slightly decrease with depth in fractured rock aquifers (granite and volcanic rock areas) containing many rock fractures. The gneiss area tended to have large local differences in permeability according to the composition of the stratum and the development of fracture zones rather than depth. In mudstone areas with weak fracture development, there was no significant variation in rock permeability according to depth. The hydraulic conductivity results by various rock types and depth presented in this study are expected to be utilized in building a foundational database for the site selection, design, and construction of disposal facilities in Korea.