• Title/Summary/Keyword: 지하철 터널

Search Result 334, Processing Time 0.025 seconds

A study on safety evaluation by changing smoke ventilation mode in subway tunnels (지하철터널 환기변환모드에 따른 안전성 평가에 관한 연구)

  • Rie, Dong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.389-400
    • /
    • 2003
  • In order to recommend the mechanical smoke exhaust operation mode, Subway Environmental Simulation (SES) is used to predict the airflow of the inlet and outlet tunnel for the subway station. Fire Dynamic Simulation (FDS) is used the SES's velocity boundary conditions to clarity the smoke exhaust effectiveness by the variations with mechnical ventilation system. We compared each 6 types of smoke exhaust systems for the result of smoke density and temperature distributions for 1.5m height from the subway station base in order to clarify the safety evaluation for the heat and smoke exhaust on subway fire.

  • PDF

Tunnelling in Bangkok - Two Case Studies (방콕의 터널공사 - 두 개의 사례연구)

  • Teparaksa, Wanchai;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.153-163
    • /
    • 2005
  • This paper presents two case studies for tunnelling in Bangkok: a subway tunnel site and a flood diversion tunnel site. The first case study is related to ground displacement response for dual tunnel Bangkok MRT subway. The MRT subway project of Bangkok city consists of dual tunnels about 20 km long with 18 subway stations. The tunnels are seated in the firm first stiff silty clay layer between 15-22 m in depth below ground surface. The behavior of ground deformation response based on instrumentation is presented. The back analysis based on plain strain FEM analysis is also presented and agrees with field performance. The shear strain of FEM analysis is in the range of 0.1-1% and in accordance with the results of self boring pressuremeter tests. Meanwhile, the second case study is related to the EPB tunnelling bored underneath through underground obstruction. The Premprachakorn flood diversion tunnel is the shortcut tunnel to divert the flood water in rainy season into the Choapraya river. The tunnel was bored by means of EPB shield tunnelling in very stiff silty clay layer at about 20-24 m in depth. During flood diversion tunnel bored underneath the existing Bangkok main water supply tunnel and pile foundation of the bridge, instrumentation was monitored and compared with predicted FEM analysis. The prevention risk potential by means of predicting damage assessment is also presented and discussed.

  • PDF

A Study of Heat St Smoke Evacuation Characteristics by the Changing of Operational Method of Tunnel Fan Shaft Ventilation System for Fire on Subway Train Vehicle (지하철 화재시 본선터널 환기시스템에 따른 열 및 연기배출특성)

  • 이동호;유지오
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The smoke control system in subway platform is not only using for smoke exhaust facility but also using ventilation system. For this reason, smoke vent effectiveness is depending on its position, ventilating volume capacity and the vent method. In this study, the passenger's evacuation time was calculated for the case of fire on sloped subway train vehicle in subway platform. In order to recommend the mechanical smoke exhaust operation mode, SES (Subway Environmental Simulation) was used to predict the airflow of the inlet and outlet tunnel for the subway station. Fire dynamics Simulator(FDS) was used the SES's velocity boundary conditions to calculate the smoke density and temperature under the condition of fire on stopped subway train vehicle at the platform. We compared smoke density and temperature distributions for each 6 types of smoke exhaust systems to clarify the characteristics of smoke and hot air exhaust effectiveness from the result of fire simulation.