• Title/Summary/Keyword: 지하안전

Search Result 1,170, Processing Time 0.026 seconds

Development of an Automatic Updated System for Underground Structures (지하구조물 자동갱신 시스템 개발)

  • LEE, Min-Kyu;HAN, Sang-Hoon;KIM, Sung-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.82-98
    • /
    • 2021
  • In recent years, as the number of ground subsidence has increased nationwide, the latest and usefulness of underground information for underground space development and underground safety management has become more important than ever. However, the 3D Underground Geospatial Map project, which started in 2015, has a problem with the manual-based long-term update system. This research paper overcomes these limitations and automatically updates the 3D CAD/GIS-based integrated management of underground structures that can be managed automatically from a full-cycle perspective of underground structure data management such as processing, transformation, updating, management, and visualization of 2D/3D underground structure data. If this technology is applied, it is possible to integrate processing and update management of the existing complex 3D construction logic of underground structures in one system, and it is expected that it can be used for underground space development and underground safety management as a foundation technology for automatic update of underground structures data.

Numerical Analysis of Effect of Porous Underground dam for Mitigating Saltwater Intrusion in Coastal Areas (해안지역에서 염수침입 저감을 위한 다공성 지하댐의 효과에 대한 수치적 분석)

  • Jeong, Woo Chang;Kim, Ju Hyuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.272-272
    • /
    • 2021
  • 해안지역에서 염수침입을 저감하기 위한 지하댐은 전세계적으로 많이 사용되고 있으며, 일반적으로 염수를 포함하고 있는 지하수의 이동을 차단하는 역할을 한다. 이러한 차단으로 인해 지하댐 내 바다 방향으로 향해있는 영역과 해안 내륙에서의 오염물질과 염분의 축적이 발생될 수 있다. 기존의 염수칩입을 저감하기 위해 이용되는 지하댐의 연구는 대부분 불투수성으로 고려하여 수행되었으나 본 연구에서는 투수성 다공성 지하댐에 대한 효과를 수치적 기법을 이용하여 분석하였다. 이러한 투수성 다공성 지하댐은 해수위의 변화에 따라 염수와 담수의 흐름을 원활하게 할 수 있으며, 이로 인해 오염물질과 염분의 축적이 최소화 될 수 있을 것으로 기대할 수 있다. 본 연구에서는 상용 유동모의 및 해석 소프트웨인 ANSYS CFX 모형을 이용하여 투수성 다공성 지하댐의 유효높이와 유효폭 그리고 단일 그리고 다중 양수에 따른 염수침입의 특성을 분석하였으며, 이에 대한 지하댐의 최적 위치에 대한 분석을 수행하였다.

  • PDF

A comparative study on stability evaluation of caverns by 2D continuum analysis in terms of shape factor (2차원 연속체 해석에 의한 지하공동 형상비별 안정성 평가 비교)

  • You, Kwang-Ho;Jung, Ji-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.193-205
    • /
    • 2008
  • The construction of underground structures such as oil and food storage caverns are recently increasing in our country. The stability of those underground caverns are greatly influenced by their shape and size. In this study therefore, the effect that the shape of an underground cavern have on its stability were analyzed in terms of safety factor. To this end, caverns with 5 different shapes were investigated and sensitivity analyses were performed based on rock class, overburden, and lateral earth pressure coefficient. The proper amount of shotcrete and rockbolt as supports of a cavern was also assumed based on the shape and site of the cavern and rock conditions. This study is expected to be helpful in designing and evaluating the stability of caverns in future.

  • PDF

A numerical study on the characteristics of small underground cavities in the surrounding old water supply and sewer pipeline (노후 상하수관 주변지반의 소규모 지하공동 형상 특성을 고려한 수치해석에 관한 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Song, Ki-Il;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.287-303
    • /
    • 2018
  • In recent years, the occurrence of ground subsidence phenomenon is frequent in Korea. The Korean government has enacted a special law on underground safety and the law will be enforced from January 1, 2018. Under this new law, underground excavation should be assessed for underground safety impacts. After excavation construction, periodic geophysical surveys should be conducted to investigate the occurrence of underground cavities. When underground cavities were discovered, the underground safety was assessed through numerical analysis. However, it is controversial because the method of numerical modeling the discovered underground cavity is due to be established. In this study, the effect of the depth of the underground cavity from the shape of the underground cavity to the underground cavity was studied using a continuum analysis program. In this study, a method to reflect the shape of the underground cavity to the numerical modeling is presented. The relationship between the shape and depth of the underground cavity, and the factor of safety calculated by the shear strength reduction method (SSR) is presented. The results of this study are expected to form the basic data on underground safety impact assessment.

A numerical study on the 3-Dimensional shape characteristics of small underground cavities (소규모 지하공동 3차원 형상 특성을 반영한 수치해석에 관한 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Son, Ki-Il;Kim, Woo-Seok;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.787-807
    • /
    • 2018
  • When conducting the underground safety impact assessment under the special law in Korea, it is essential to investigate the occurrence of underground cavities. When underground cavities were discovered, the underground safety was assessed through numerical analysis. The previous study has suggested the stability evaluation based on the factor of safety by changing the 2D shape of the small underground cavity. In this study, the effects of small underground cavities considering 3D shapes were examined using a continuum analysis program and compared with the 2D results presented in previous study. If the 3-Dimensional shape of the underground cavity is found close to the sphere type, it would be reasonable to evaluate the factor of safety by the shear strength reduction method regardless of the size and position of the cavity. If a high-aspect ratio underground cavity with a depth of 2 m or more from the ground surface and an aspect ratio (a/b) of 2.0 or more is in the vertical direction, not only the factor of safety but the failure mode shape should be cautions in the stability evaluation using the shear strength reduction method. The results of this study are expected to be basic data on underground safety impact assessment.

Evaluation on Damage Effect according Displacement Behavior of Underground Box Structure (지하박스구조물의 변위거동에 따른 손상영향 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jae-Min Han
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.565-570
    • /
    • 2024
  • Recently, due to adjacent excavation work such as new buildings and common tunnel expansion concentrated around the urban railway, deformation of the underground box and tunnel structure of the urban railway built underground has occurred, and as a result, repair and reinforcement work is frequently carried. In addition, the subway is responsible for large-scale transportation, so ensuring the safety and drivability of underground structures is very important. Accordingly, an automated measurement system is being introduced to manage the safety of underground box structures. However, there is no analysis of structural damage vulnerabilities caused by subsidence or uplift of underground box structures. In this study, we aim to analyze damage vulnerabilities for safety monitoring of underground box structures. In addition, we intend to analyze major core monitoring locations by modeling underground box structures through numerical analysis. Therefore, we would like to suggest sensor installation locations and damage vulnerable areas for safety monitoring of underground box structures in the future.

Design consideration and explosion safety of underground ammunition storage facilities (지하탄약고의 설계요소 및 폭발안전 연구)

  • Kim, Oon-Young;Lee, Myung-Jae;Kim, Min-Seok;Kim, Joon-Youp;Joo, Hyo-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.55-70
    • /
    • 2003
  • Ammunition magazine, which is installed on the ground, has difficulty in protecting from the external attack, and accidental explosion should cause great damage to the life and property. For these reasons, it is needed to develop underground magazine that it has the advantages of safety, security and maintenance. This paper introduce the design case for blasting facilities, which should resist blasting pressure, as well as layout of underground magazine, which takes a safety for explosion and a working space of loading/unloading machine into consideration. On the layout, in case of ${\bigcirc}{\bigcirc}$ underground magazine, put three storage chambers in position almost parallel with principle stress direction, where less effected on discontinuity and hard rock area. Also, secured safe distance according to safety criteria of the Defense Ministry, and verified suitable layout by trace simulation for loading/unloading machine on working stage. Blasting design was performed on evaluation of maximum blast pressure between donar and acceptor chambers, and design condition for blast door, valve, etc. Diminution facilities against explosion, such as thrust block or debris trap, determined its size after plan in accordance with blasting criteria and calculation by structural analysis.

  • PDF

Preliminary Study for Risk Assessment Estimation of Urban Underground Connect Section Using VISSIM : Comparison of Characteristics Based on Diverge/Merge (VISSIM을 활용한 도심 지하도로 연결로 위험도 산정을 위한 기초연구 : 분·합류부 기준 특성 비교)

  • Park, Sang Hyun;Lee, Jin Kak;Yang, Choong Heon;Kim, Jin Guk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.59-74
    • /
    • 2021
  • The domestic road space is reaching the limit of planar space distribution, and Increasingly, the importance of three-dimensional space distribution through the development of underground space. therefore, In this study, a study was conducted on a traffic control method that can safely induce two different traffic flows in the connection between the ground road and the underground road. Through VISSIM, we calculated the appropriate amount of outflow and inflow traffic compared to the capacity of the main line when there is a Merge/Diverge section in the underground road. and Through the analysis of the number of conflicts, the appropriate traffic control level for safety in the underground, A basic study was conducted on the level of risk in the underpass according to the level of delay in the ground part through the analysis of the delay scenario of the ground road.

A Study on the Development of an Automated Inspection Program for 3D Models of Underground Structures (지하구조물 3차원 모델 자동검수 프로그램 개발에 관한 연구)

  • Kim, Sung Su;Han, Kyu Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.413-419
    • /
    • 2022
  • As the development of the underground space becomes active, safety accidents related to the underground are frequently occurring in recent years. In this regard, the Ministry of Land, Infrastructure and Transport is enforcing the 『Special Act on Underground Safety Management』 (enforced on January 1, 2018, hereafter referred to as the Underground Safety Act). Among the core contents of the Underground Safety Act, underground facilities(water supply, sewage, gas, power, communication, heating) buried underground, underground structures(subway, underpass, underpass, underground parking lot, underground shopping mall, common area), ground (Drilling, wells, geology) of 15 types of underground information can be checked at a glance on a three-dimensional basis by constructing an integrated underground spatial map and using it. The purpose of this study is to develop a program that can quickly inspect the three-dimensional model after creating a three-dimensional underground structure data among the underground spatial integration maps. To this end, we first investigated and reviewed the domestic and foreign status of technology that generates and automatically inspects 3D underground structure data. A quality inspection program was developed. Through this study, it is judged that it will be meaningful as a basic research for improving the quality of underground structures on the integrated map of underground space by automating more than 98% of the 3D model inspection process, which is currently being conducted manually.

An Acoustic-based Method of Detecting Electric Sparks in Underground Facilities (음향기반 지하시설물의 전기스파크 감지 방법)

  • Lee, Byung-Jin;Jung, Woo-Sug
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.73-74
    • /
    • 2023
  • 본 논문에서는 음향센서를 기반으로 한 지하시설물 화재 위험감지 방법을 제안하였다. 음향센서는 진동이나 광센서처럼 접촉식이 아니기 때문에 결로가 발생하고 있는 취약구간에 설치하여 보다 효율적으로 활용이 가능하고 지하시설물 내부에 설치된 기기나 장비들과 상호작용하거나 간섭하지 않기 때문에 안전하게 관리가 가능하다. 이러한 특징으로 지하 시설물에서 내 통행이 불편하여 관리하기 힘든 구간이나 결로가 많아 화재안전에 주의가 필요한 곳에 설치하여 전기스파크 발생 감지를통해 재난이 발생하기 이전 화재위험을 감지하는 방법론 중 하나가 될 수 있다. 제안하는 방법은 음향 센서를 통해 지하공동구 안에서 발생하는 소리들을 수집하고 일정한 길이의 시간 단위 프레임들로 분할한 후 분석하여 전기스파크의 특징 벡터를 도출한다. 전기스파크 감지 모델로는 전기스파크 신호의 지역적 특성을 포착할 수 있도록 2D-CNN 구조를 사용하며 모델에서 출력된 전기 스파크 발생 예측확률을 분할된 단위 프레임 따라 계산하여 융합한다. 이로 인해 높은 정확도의 전기스파크 감지 정밀도를 얻을 수 있으며, 이는 전기 스파크에 의한 화재 이벤트 감지 있어서 효과적인 센싱 기술임을 알 수 있다.

  • PDF