• Title/Summary/Keyword: 지하시설물 탐사

Search Result 41, Processing Time 0.022 seconds

Development and Application of a Source for Crosshole Seismic Method to Determine Body Wave Velocity with Depth at Multi-layered Sites (다층 구성 부지에서의 깊이별 실체파 속도의 결정을 위한 시추공간 탄성파 탐사 발진 장치 개발 및 적용)

  • Sun, Chang-Guk;Mok, Young-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.193-206
    • /
    • 2006
  • Among various borehole seismic testing techniques for determining body wave velocity, crosshole seismic method has been known as one of the most suitable technique for evaluating reliably geotechnical dynamic properties. In this study, to perform successfully the crosshole seismic test for rock as well as soil layers regardless of the groundwater level, multi-purposed spring-loaded source which impact horizontally a subsurface ground in vertical borehole was developed and applied at major facility sites in Korea. The geotechnical dynamic properties were evaluated by determining efficiently the body wave velocities such as shear wave velocity and compressional wave velocity from the horizontally impacted crosshole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation and seismic design of the target facilities.

The Effect of Ground Heterogeneity on the GPR Signal: Numerical Analysis (지반의 불균질성이 GPR탐사 신호에 미치는 영향에 대한 수치해석적 분석)

  • Lee, Sangyun;Song, Ki-il;Ryu, Heehwan;Kang, Kyungnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.29-36
    • /
    • 2022
  • The importance of subsurface information is becoming crucial in urban area due to increase of underground construction. The position of underground facilities should be identified precisely before excavation work. Geophyiscal exporation method such as ground penetration radar (GPR) can be useful to investigate the subsurface facilities. GPR transmits electromagnetic waves to the ground and analyzes the reflected signals to determine the location and depth of subsurface facilities. Unfortunately, the readability of GPR signal is not favorable. To overcome this deficiency and automate the GPR signal processing, deep learning technique has been introduced recently. The accuracy of deep learning model can be improved with abundant training data. The ground is inherently heteorogeneous and the spacially variable ground properties can affact on the GPR signal. However, the effect of ground heterogeneity on the GPR signal has yet to be fully investigated. In this study, ground heterogeneity is simulated based on the fractal theory and GPR simulation is carried out by using gprMax. It is found that as the fractal dimension increases exceed 2.0, the error of fitting parameter reduces significantly. And the range of water content should be less than 0.14 to secure the validity of analysis.

Technological Development Trends for Underground Safety in Urban Construction (도심지 공사시 지하안전 확보를 위한 기술개발 동향)

  • Baek, Yong;Kim, Woo Seok
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.343-350
    • /
    • 2017
  • Amid increasingly saturated ground space, development of underground space has been booming throughout the world and excavation has been underway near the structure above or under the ground level. But the ground subsidence caused by improper or poor construction technologies, underground water leakage, sudden changes of stratum and the problem with earth retaining system component has been emerged as hot social issue. To deal with such problems nationwide, establishment of preventive and proactive disaster management and rapid restoration system has been pushed now. In this study, collection of the data on technology development trend to secure the underground safety was made, taking into account of internal change elements (changing groundwater level, damage to underground utilities, etc) and external change elements (vehicle load, earthquake and ground excavation, etc) during excavation. Amid the growing need of ground behavior analysis, ground subsidence evaluation technology, safe excavation to prevent ground subsidence and reinforcement technology, improvement of rapid restoration technology in preparation for ground subsidence and development of independent capability, this study is intended to introduce the technology development in a bid to prevent the ground subsidence during excavation. It's categorized into prediction/evaluation technology, complex detect technology, waterproof reinforcement technology, rapid restoration technology and excavation technology which, in part, has been in process now.

Automatic Detection System of Underground Pipe Using 3D GPR Exploration Data and Deep Convolutional Neural Networks

  • Son, Jeong-Woo;Moon, Gwi-Seong;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.27-37
    • /
    • 2021
  • In this paper, we propose Automatic detection system of underground pipe which automatically detects underground pipe to help experts. Actual location of underground pipe does not match with blueprint due to various factors such as ground changes over time, construction discrepancies, etc. So, various accidents occur during excavation or just by ageing. Locating underground utilities is done through GPR exploration to prevent these accidents but there are shortage of experts, because GPR data is enormous and takes long time to analyze. In this paper, To analyze 3D GPR data automatically, we use 3D image segmentation, one of deep learning technique, and propose proper data generation algorithm. We also propose data augmentation technique and pre-processing module that are adequate to GPR data. In experiment results, we found the possibility for pipe analysis using image segmentation through our system recorded the performance of F1 score 40.4%.

Evaluation of dynamic ground properties using laterally impacted cross-hole seismic test (횡방향 발진 크로스홀 탄성파 시험을 이용한 지반의 동적 특성 평가)

  • Mok Young-Jin;Sun Chang Guk;Kim Jung-Han;Jung Jin-Hun;Park Chul-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.155-175
    • /
    • 2005
  • Soil and rock dynamic properties such as shear wave velocity (VS), compressional wave velocity (VP) and corresponding Poisson's ratio ( v ) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as VS, VP and v with depth were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

  • PDF

The Road Subsidence Status and Safety Improvement Plans (도로함몰 실태와 안전관리 개선 방안)

  • Bae, Yoon-Shin;Kim, Kyoon-Tai;Lee, Sang-Yum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.545-552
    • /
    • 2017
  • Ground subsidence can result in the formation of sinkholes, potholes, settlement of structures, and road subsidence. Road subsidence is described as the sudden collapse of the road surface into subsurface cavities caused by the loss of bearing capacity in the ground, such as the dissolution of limestone by fluid flow in the surface causing the formation of voids leading to subsidence at the surface. Road subsidence occurs about 665 times annually, and this incidence has been increasing until 2013. Damaged underground facilities, management negligence, and lowering of the ground water table have been the causes of road subsidence in Seoul. Seoul metropolitan government announced special management counter plans to relieve the anxieties and make the roads safe for passing. Construction sites, such as excavation works, need to be managed properly because they have strong potential to induce road subsidence. The aim of this study was to identify the main causes of road subsidence and suggest management plans. First, life cycle cost analysis revealed the daytime construction to be more appropriate than nighttime. In addition, by analyzing the limitations of using sand as a backfill material, it is proposed to use a flowable backfill material instead of sand. Finally, to reduce the blind spots, which is a problem in surveying the road pavement conditions of local governments, the road to be managed is divided into several zones, and a specialized agency is selected for each zone and a method of surveying the blind spots through collaboration is suggested.

A Case Study of Site Investigation and Ground Stability Analysis for Diagnosis of Subsidence Occurrence in Limestone Mine (석회석 광산 지역의 지반침하 원인 규명을 위한 현장조사와 지반 안정성 분석 사례)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Oh, Seok-Hoon
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.332-340
    • /
    • 2015
  • Ground subsidence occurring in mine area can cause an enormous damage of loss of lives and properties, and a systematic survey should be conducted a series of field investigation and ground stability analysis in subsidence area. This study describes the results from field investigation and ground stability analysis in a limestone mine located in Cheongwon-gun, Chungcheongbuk-do, Korea. Rock mechanical measurements and electrical resistivity surveys are applied to obtain the characteristics of in-situ rock masses and the distribution patterns of subsurface weak zone, and their results are extrapolated in numerical analysis. From the field investigation and stability analysis, it is concluded that the subsidence occurrence in this limestone mine is caused mainly by subsurface limestone cavities.

A Study of Disposition of Archaeological Remains in Wolseong Fortress of Gyeongju : Using Ground Penetration Radar(GPR) (GPR탐사를 통해 본 경주 월성의 유적 분포 현황 연구)

  • Oh, Hyun Dok;Shin, Jong Woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.306-333
    • /
    • 2010
  • Previous studies on Wolseong fortress have focused on capital system of Silla Dynasty and on the recreation of Wolseong fortress due to the excavations in and around Wolseong moat. Since the report on the Geographical Survey of Wolseong fortress was published and GPR survey in Wolseong fortress was executed as a trial test in 2004, the academic interest in the site has now expanded to the inside of the fortress. From such context, the preliminary research on the fortress including geophysical survey had been commenced. GPR survey had been conducted for a year from March, 2007. The principal purpose of the recent 3D GPR survey was to provide visualization of subsurface images of the entire Wolseong fortress area. In order to obtain 3D GPR data, dense profile lines were laid in grid-form. The total area surveyed was $112,535m^2$. Depth slice was applied to analyse each level to examine how the layers of the remains had changed and overlapped over time. In addition, slice overlay analysis methodology was used to gather reflects of each depth on a single map. Isolated surface visualization, which is one of 3D analysis methods, was also employed to gain more in-depth understanding and more accurate interpretations of the remain The GPR survey has confirmed that there are building sites whose archaeological features can be classified into 14 different groups. Three interesting areas with huge public building arrangement have been found in Zone 2 in the far west, Zone 9 in the middle, and Zone 14 in the far east. It is recognized that such areas must had been used for important public functions. This research has displayed that 3D GPR survey can be effective for a vast area of archaeological remains and that slice overlay images can provide clearer image with high contrast for objects and remains buried the site.

A Study on GPR Image Classification by Semi-supervised Learning with CNN (CNN 기반의 준지도학습을 활용한 GPR 이미지 분류)

  • Kim, Hye-Mee;Bae, Hye-Rim
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.197-206
    • /
    • 2021
  • GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels. Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods. This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.

A Case Study of Geometrical Fracture Model for Groundwater Well Placement, Eastern Munsan, Gyeonggido, Korea (지하수개발을 위한 단열모델 연구사례(경기도 문산 동쪽지역))

  • Choi Sung-Ja;Chwae Uee-Chan;Kim Se-Kon;Park Jun-Beom;Sung Ki-Sung;Sung Ik-Whan
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.163-171
    • /
    • 2006
  • This study is the case of groundwater development based on the geometrical fracture model of target area established only through geological fracture mapping technique. A fracture mapping of $9km^2$, eastern Munsan, has been conducted to determine geological and hydrological factors for new water well placement in the Gyeonggi gneiss complex. Geophysical exploration was not applicable because of small restricted area and dense underground utilities at the site. Form line mapping on the basis of foliation orientation and rock type revealed a synform of NS fold axis bearing to the south. An EW geological cross-section passed through the site area shows a F2 synform as a double-wall ice cream spoon shape. Three regional faults of $N20^{\circ}E,\;N30^{\circ}W$, and NS have been dragged into the site to help understand extensional fault paths. The $N20^{\circ}E$ fault with dextral sense is geometrically interpreted as a western fault of two flexural conjugate type-P shear faults in the F2 synformal fold. The NE cross-section reveals that a possible groundwater belt in the western limb of super-posed fold area is formed as a trigonal prism within 100 m depth of the intersectional space between the $N20^{\circ}E$ fault plane and the weakly sheared plane of transposed foliation. Another possible fault for water resource strikes $N40^{\circ}E$. Recommended sites for new water well placement are along the $N20^{\circ}E\;and\;N40^{\circ}E$ faults. As a result of fracture mapping, 145 ton/day of water can be produced at one well along the $N20^{\circ}E$ fault line. Exploration of groundwater in the area is succeeded only using with geological fracture mapping and interpretation of geological cross-section, without any geophysical survey. Intersection of fault generated with the F2 synformal fold and foliation supply space of groundwater reserver.