• Title/Summary/Keyword: 지하수 질산염

Search Result 52, Processing Time 0.028 seconds

Temporal and Spatial Variations of water Quality of the Coastal Saline Groundwaters in Jeju Island (제주도 염지하수 수질의 시공간적 변화)

  • 김성수;김대권;손팔원;이창훈;하동수
    • Journal of Aquaculture
    • /
    • v.16 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • We have investigated water quality of the coastal saline groundwaters utilized for fish farms in Jeju Island. The water quality investigation included the spatial observations for 75 fish farms during March-May, 1994 and the hi-monthly observations for both coastal saline groundwaters and seawaters at four fish farms from August 1994 to December 1995. Water temperature of the saline groundwaters ranged from 16 to 18$^{\circ}C$ over the study period. Salinity of the saline groundwaters varied between 20.60 ppt and 34.02 ppt, slightly lower than that of the coastal seawaters(26.47~34.53 ppt). This salinity variation must be associated with local precipitation conditions in Jeju Island. The oxygen saturation for most saline groundwater samples was lower than 80%, ranging from 24.7 to 89.8%. The COD and pH values for the saline groundwaters were similar to those for the coastal seawaters. The concentrations of DIP for the saline groundwaters varied between 0.021 mg/L and 0.121 mg/ L, and seasonal variation of DIP in the saline groundwater ranged from 0.014 to 0.077 mg/L, which were higher than that of the coastal seawaters(0.000~0.015 mg/L). Nitrate in the saline groundwaters accounted for more than 90% of the DIM. The maximum concentrations of ammonia, nitrite, nitrate and DIN in the saline groundwaters were 0.085, 0.012, 2.294 and 2.309 mg/L, respectively. These concentrations of the saline groundwaters were considerably lower than those affected culture organisms. Overall, the saline groundwaters utilized for fish farms in Jeju Island appear to maintain good waterquality for fish farms.

Influence of Groundwater on the Hydrogeochemistry and the Origin of Oseepchun in Dogye Area, Korea (도계지역 오십천에서의 지하수 영향분석 - 수리지화학적 특성과 기원)

  • Hwang, Jeong Hwan;Song, Min Ho;Cho, Hea Ly;Woo, Nam C
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.167-179
    • /
    • 2016
  • Water quality of Oseepchun, Dogye area, was investigated quantitatively for its origin and hydrogeochemistry in relation to the influence of groundwater. Groundwater appears to be the principal source of Oseepchun from the water-quality monitoring data including redox potentials, composition of dissolved ions and their correlations, hydrogen and oxygen stable isotopic ratios, and the distribution and occurrence of contaminants. Water-quality type of the surface water was grouped by the water-rock interactions as $Ca-HCO_3$ type originated from carbonated bed-rocks in the Joseon Supergroup, (Ca, Mg)-$SO_4$ type related with dissolution of surfide minerals in coal beds of Pyeongan Supergroup, and (Ca, Mg)-($HCO_3$, $SO_4$) type of the mixed one. Locally water pollution occurs by high $SO_4$ from mine drainage and $NO_3$ from waste-treatment facility. Intensive precipitation in summer has no effect on the water type of Oseepchun, but increases the inflow of nitrate and chloride originated from land surface. Results of this study direct that groundwater-surface water interaction is intimate, and thus surface-water resource management should begin with groundwater characterization.

Spatial-temporal Variations of Nitrate Levels in Groundwater of Jeju Island, Korea: Evaluation of Long-term (1993-2015) Monitoring Data (제주도 지하수질산염 농도의 시·공간적변화 특성: 장기(1993-2015) 모니터링 자료의 평가)

  • Kim, Ho-Rim;Oh, Junseop;Do, Hyun-Kwon;Lee, Kyung-Jin;Hyun, Ik-Hyun;Oh, Sang-Sil;Kam, Sang-Kyu;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.15-26
    • /
    • 2018
  • The spatio-temporal variations of nitrate concentrations in groundwater of Jeju Island were evaluated by an analysis of time series groundwater quality data (N = 21,568) that were collected from regional groundwater monitoring (number of wells = 4,835) for up to 20 years between 1993 and 2015. The median concentration of $NO_3-N$ is 2.5 mg/L, which is slightly higher than those reported from regional surveys in other countries. Nitrate concentrations of groundwater in wells tend to significantly vary according to different water usage (of the well), administrative districts, and topographic elevations: nitrate level is higher in low-lying agricultural and residential areas than those in high mountainous areas. The Mann-Kendall trend test and Sen's slope analysis show that nitrate concentration in mid-mountainous areas tends to increase, possibly due to the expansion of agricultural areas toward highland. On the other hand, nitrate concentrations in the Specially Designated Groundwater Quality Protection Zones show the temporally decreasing trend, which implies the efficiency of groundwater management actions in Jeju. Proper measures for sustainable groundwater quality management are suggested in this study.

Electrokinetic Restoration of Saline Soil Accumulated with Nitrate and Sulfate (질산염 및 황산염 집적 염류 토양의 전기역학적 개량)

  • Cho, Jung-Min;Jo, Sung-Ung;Kim, Do-Hyung;Yang, Jung-Seok;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.18-23
    • /
    • 2011
  • The electrokinetic transport characteristics of salts were investigated using nitrate and sulfate accumulated saline greenhouse soil. Within 8 days, 95% of nitrate was removed from the soil, while sulfate removal was 19% for 8 days. The low removal of sulfate came from adsorption reaction on the soil particles or organic matter and precipitation with calcium. Divalent cations such as calcium and magnesium were transported toward cathode via electromigration, and most monovalent cation such as potassium was removed. The pattern of residual electrical conductivity was similar with that of sulfate. Based on the results, electrokinetic technique is effective to restore nitrate-accumulated saline soil, but is not effective to restore sulfate-accumulated soil.

Evaluating groundwater-surface water interaction in riverside alluviums of the middle and low Nakdong River basin (낙동강 중.하류지역 하성충적층내의 지하수-지표수 연관성 평가)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Kim, Gyoo-Bum;Ok, Soon-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.179-183
    • /
    • 2010
  • 본 연구는 낙동강 중류 지역의 경북 구미시, 경북 왜관읍, 경북 성주군과 하류 지역의 경남 함안군, 창원시 북면과 대산면, 김해시 생림면의 하성충적층 내 지하수와 낙동강물의 연관성을 파악하였다. 중류와 하류지역에서 하성충적층의 주 대수층(모래자갈층)의 두께는 10m 내외로서 공간적으로 큰 차이를 보이지는 않는다. 하성충적층의 수리전도도는 $10^{-5}{\sim}10^{-3}$m/sec를 나타낸다. 하성충적층의 지하수위는 지역에 따라 해수면 기준으로 1.40~11.5m에서 변동하며, 지하수위와 낙동강 수위는 높은 상관성을 보인다. 지하수와 낙동강물의 화학분석 결과, 칼슘, 마그네슘, 나트륨, 칼륨, 염소, 규산, 중탄산, 망간, 철과 같은 무기성분의 농도는 지하수에서 더 높게 나타나고 있으나, 질산염의 농도는 낙동강물에서 더 높게 나타난다. 지하수내의 유기물질의 농도는 계절에 관계없이 비교적 일정하나, 낙동강물의 유기물질 농도는 우기보다 건기에 더 높은 경향성을 보이고 있다. 이러한 연구결과는 4대강 살리기 사업이나 하천주변지역의 수자원 개발에 활용될 수 있을 것이다.

  • PDF

Introduction of Denitrification Method for Nitrogen and Oxygen Stable Isotopes (δ15N-NO3 and δ18O-NO3) in Nitrate and Case Study for Tracing Nitrogen Source (탈질미생물을 이용한 질산성 질소의 산소 및 질소 동위원소 분석법 소개)

  • Lim, Bo-La;Kim, Min-Seob;Yoon, Suk-Hee;Park, Jaeseon;Park, Hyunwoo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.459-469
    • /
    • 2017
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of denitrification bacteria method (Pseudomonas chlororaphis ssp. Aureofaciens ($ATCC^{(R)}$ 13985)), three reference (IAEA-NO-3 (Potassium nitrate $KNO_3$), USGS34 (Potassium nitrate $KNO_3$), USGS35 (Sodium nitrate $KNO_3$)) were analyzed 5 times repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values of IAEA-NO-3, USGS 34 and USGS35 were ${\delta}^{15}N:4.7{\pm}0.1$${\delta}^{18}O:25.6{\pm}0.5$‰, ${\delta}^{15}N:-1.8{\pm}0.1$${\delta}^{18}O:-27.8{\pm}0.4$‰, and ${\delta}^{15}N:2.7{\pm}0.2$${\delta}^{18}O:57.5{\pm}0.7$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated isotope values of potential nitrogen source (soil, synthetic fertilizer and organic-animal manures) and temporal patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values in river samples during from May to December. ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values are enriched in December suggesting that organic-animal manures should be one of the main N sources in those areas. The current study clarifies the reliability of denitrification bacteria method and the usefulness of stable isotopic techniques to trace the anthropogenic nitrogen source in freshwater ecosystem.

Groundwater Quality and Contamination in Dukpyung area (충북 괴산군 덕평리 일대의 지하수 수질과 오염)

  • 김형돈;우남칠;최미정
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.141-147
    • /
    • 1998
  • This study was initiated to identify the general groundwater quality and the effects of heavy-metal enrichments in the black shales and coal materials in Dukpyung area. Groundwater quality could be divided into three groups based on the major weathering processes in the groundwater system; Group I of carbonate weathering, Group II of silicate weathering with the probable effects of acidic mine drainage, and Group III of silicate weathering with relatively high concentrations of chloride components in anions. Metal contamination of groundwater was not observed. Locally, however, acidic mine drainage appeared to be produced and recharged into the groundwater system. In addition, contamination by NO$_3$-N ranged 2 to 3 times higher than the drinking water standards, probably due to infiltration of domestic sewage and/or fertilizers into the shallow aquifer.

  • PDF

Effect of Well Depth, Host Rocks and Mineralization Zone on Hydrochemical Characteristics of Groundwater in the Umsung Area (음성지역 지하수의 수리화학적 특성에 대한 심도, 모암 및 광화대의 영향)

  • Jeong Chan Ho;Lee Byung Dae;Sung Ig hwan;Cho Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.469-485
    • /
    • 2004
  • The purpose of this study is to investigate the hydrochemical characteristics of groundwater in the Umsung area, and to elucidate the effect of host rock type, well depth and mineralization zone on the groundwater chemistry. The geology of the study area consists of Jurassic granite and Cretaceous sedimentary rocks, which are bounded by a fault. Most of shallow groundwaters exploited in the Jurassic granite area are used for agricultural purpose, whereas the deep groundwaters in the Cretaceous sedimentary rocks are used for a drinking water. The shallow groundwater shows weak acidic pH, the electrical conductivity ranging from $142\;to\;903\;{\mu}S/cm$, and the chemical type of $Ca-HCO_3\;to\;Ca-Cl(SO_4,\;NO_3)$. A few of shallow groundwaters are contaminated by nitrate, and show high concentration of Fe, Mn and Zn, that reflects the effect of a mineralization zone. The deep groundwater shows neutral to weak alkaline pH, higher electrical conductivity than that of shallow groundwater, and the chemical type of $Ca-HCO_3$. The seepage water from the abandoned mines does not have the characteristics such as acidic pH, high concentration of heavy metals and high sulfate content. The hydrogen and oxygen isotopes of groundwater indicates an altitude effect of the recharge area between deep groundwater and shallow groundwater. In conclusion, the chemical composition of groundwater complicately reflects the effects of their host rocks, well depth, agricultural activity and mineralization zone in the study area.

Thermal Decomposition and Stabilization of the Lagoon Sludge Solid Waste after Dissolution with Water (라군 슬러지 물 용해 후 고체 패기물의 열분해 및 안정화)

  • Oh Jong-Hyeok;Hwang Doo-Seong;Lee Kue-Il;Choi Yun-Dong;Hwang Sung-Tae;Park Jin-Ho;Park So-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.249-256
    • /
    • 2005
  • Thermal decomposition and stabilization characteristics of the solid cake after the dissolution of nitrate of the lagoon sludge was investigated. Most of the nitrates were dissolved in the water and removed to the filtrate, but small amount of nitrates, calcium carbonate and uranium were remained in the solid cake. The solid cake was thermally decomposed in the muffle furnace at $900^{\circ}C$ for 5 hours. Uranium, which is in the lagoon 1, was stabilized with $NaNO_3$ decomposition to $Na_{2}O{\cdot}2UO_3$ form. For the lagoon 2, it is confirmed that CaO, which was created by thermal decomposition of the $Ca(NO_3)_2$ and $CaCO_3$, was transferred to $Ca(OH)_2$ in the air with water. Because it is known that $Ca(OH)_2$ is stable material, further additives did not need to the stabilization of the thermal decomposition of the lagoons.

  • PDF

Characteristics of Groundwater Quality in a Riverbank Filtration Area (강변여과수 부지 내 충적층 지하수의 수질특성과 변화)

  • Hyun Seung-Gyu;Woo Nam-C.;Shin Woo-Sik;Hamm Se-Yeong
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.151-162
    • /
    • 2006
  • Characteristics and changes of groundwater qualify were investigated in a riverbank filtration area at Daesan-myeon, Changwon City, Korea. The total dissolved solids (TDS) in groundwater samples collected in October were much less than that in March, indicating the mixing with recharged water from precipitation, as well as the changes of dissolved oxygen profiles at monitoring wells from March to October. Redox processes at depths appeared to trigger Fe and Mn contamination of groundwater in riverbank deposits. Amorphous oxyhydroxides md carbonate minerals such as $MnCO_3$ were probably the reactive phases for dissolved Fe and Mn, respectively. Groundwater contamination by nitrate-nitrogen $(NO_3-N)$ was controlled by the redox processes and subsequent denitrification at the sampled depths. Distribution of $NO_3-N$ concentrations at monitoring wells suggested that the nitrate contaminants were originated from agricultural facilities on the riverbank deposits. Some of monitoring wells, DS-2, D-2, DS-3, SJ-1, and SJ-3, were only partially penetrated into the sand/gravel aquifer, and subsequently, could not fully function to detect the water quality changes for the pumping wells. Proper measures, with regulating agricultural activities in the riverbank deposits, should be carried out to prevent groundwater contamination of the riverbank filtration area.