• Title/Summary/Keyword: 지하수 오염 취약성 평가

Search Result 25, Processing Time 0.026 seconds

An Assessment of Groundwater Contamination Vulnerability and Priority Areas for Groundwater Management Using GIS and Analytic Hierarchy Process (GIS 및 계층분석법을 이용한 지하수 오염 취약성 평가 및 관리 우선 대상 지역 평가)

  • LEE, Moung-Jin;HYUN, Yun-Jung;HWANG, Sang-Il
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.35-51
    • /
    • 2015
  • The purpose of this study is to improve the previous groundwater contamination vulnerability assessment method, apply it to the study area, and select priority areas for groundwater management based on the quantitative analysis of groundwater contamination vulnerability. For this purpose, first, the previous 'potential contamination' based on groundwater contamination vulnerability assessment method was upgraded to the methodology considering 'adaptation capacity' which reduced contamination. Second, the weight of groundwater contamination vulnerability assessment factors was calculated based on the analytical hierarchy process(AHP) and the result of survey targeting groundwater experts. Third, Gyeonggi-do was selected as the study area and the improved methodology and weight were implemented with GIS and actual groundwater contamination vulnerability assessment was carried out. Fourth, the priority area for groundwater contamination management was selected based on the quantitative groundwater contamination vulnerability assessment diagram. The improved detailed groundwater contamination vulnerability assessment factors in this study were a total of 15 factors, and 15 factors were analyzed as new and improved weight with higher 'adaptation capacity' than the assessment factor corresponding to the previous 'potential contamination' in the weight calculation result using AHP. Also, the result of groundwater contamination vulnerability assessment in Gyeonggi Province using GIS showed that Goyang and Gwangmyeong which were adjacent to Seoul had a high groundwater contamination vulnerability and Pocheon and Yangpyeong County had a relatively low groundwater contamination vulnerability. In this study, the previous groundwater contamination vulnerability assessment was improved and applied to study areas actually. The result of this study can be utilized both directly and indirectly for the groundwater management master plan at national and local government level in the future.

Assessment of Regional Groundwater Pollution Hazard using Potential Pollutant of Pohang Area (잠재오염원을 이용한 포항지역의 광역적 지하수 오염 위험성 평가)

  • Lee, Sa-Ro;Kim, Yong-Seong;Kim, Deuk-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.1-13
    • /
    • 2006
  • The aim of the study is to assess groundwater pollution hazard of Pohang city using the DRASTIC system developed by the US Environmental Protection Agency (USEPA). Hydrogeological spatial databases of the system include information on depth to groundwater, net recharge, aquifer media, soil media, topographic slope, hydraulic conductivity, lineament and potential pollution source. With GIS based on these hydrogeological databases and the DRASTIC system, the regional groundwater vulnerability of the study area was assessed. Then the vulnerability was overlaid with potential pollution source and the regional groundwater pollution hazard was assessed by administrative district. From the results of the study, areas where need the counter plan for groundwater pollution and where should be managed for the groundwater pollution, are identified.

  • PDF

Consideration of Trends and Applications of Groundwater Vulnerability Assessment Methods in South Korea (지하수 오염취약성 평가 기법 동향과 국내 적용성 고찰)

  • Kim, Gyoo-Bum
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.1-16
    • /
    • 2008
  • There are generally two types of groundwater vulnerability assessments. Intrinsic vulnerability is based on the assessment of natural climatic, geological and hydrogeological attributes and specific vulnerability relates to a specific contaminant, contaminant class, or human activity. Several methods to assess groundwater vulnerability, which are based on hydrogeologic setting and socio-economical environment, have been developed in USA and Europe. A Modified-DRASTIC model including a lineament factor has been developed in South Korea, but it still has some limitations. To develop a solid and applicable method in this country, many data of quality, hydraulic features, GIS data, and pollution source, produced from a Basic Survey based on Article 5 of the Groundwater Act and other research projects, need to be collected, analyzed and verified introducing the previous methods.

Groundwater Pollution Susceptibility Assessment of Younggwang Area Using GIS Technique (GIS기법을 이용한 영광지역의 지하수 오염 취약성 평가)

  • 이사로;최순학
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.223-230
    • /
    • 1997
  • DRASTIC system developed by U.S.EPA, is widely used for assessing regional groundwater pollution susceptibility by using hydrogeological factors such as depth to water, net recharge, aquifer media, soil media, topography, vadose zone media, hydraulic conductivity. The system can be applied to site selection of well or waste disposal and landuse for groundwater protection. In this study, hydrogeological spatial database of Younggwang area about topography, drainage, well, geology, soil and landuse was constructed using GIS (Geographic Information System) and regional groundwater pollution susceptibility is analyzed using the spatial database and GIS overlay technique.

  • PDF

A Joint Application of DRASTIC and Numerical Groundwater Flow Model for The Assessment of Groundwater Vulnerability of Buyeo-Eup Area (DRASTIC 모델 및 지하수 수치모사 연계 적용에 의한 부여읍 일대의 지하수 오염 취약성 평가)

  • Lee, Hyun-Ju;Park, Eun-Gyu;Kim, Kang-Joo;Park, Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.77-91
    • /
    • 2008
  • In this study, we developed a technique of applying DRASTIC, which is the most widely used tool for estimation of groundwater vulnerability to the aqueous phase contaminant infiltrated from the surface, and a groundwater flow model jointly to assess groundwater contamination potential. The developed technique is then applied to Buyeo-eup area in Buyeo-gun, Chungcheongnam-do, Korea. The input thematic data of a depth to water required in DRASTIC model is known to be the most sensitive to the output while only a few observations at a few time schedules are generally available. To overcome this practical shortcoming, both steady-state and transient groundwater level distributions are simulated using a finite difference numerical model, MODFLOW. In the application for the assessment of groundwater vulnerability, it is found that the vulnerability results from the numerical simulation of a groundwater level is much more practical compared to cokriging methods. Those advantages are, first, the results from the simulation enable a practitioner to see the temporally comprehensive vulnerabilities. The second merit of the technique is that the method considers wide variety of engaging data such as field-observed hydrogeologic parameters as well as geographic relief. The depth to water generated through geostatistical methods in the conventional method is unable to incorporate temporally variable data, that is, the seasonal variation of a recharge rate. As a result, we found that the vulnerability out of both the geostatistical method and the steady-state groundwater flow simulation are in similar patterns. By applying the transient simulation results to DRASTIC model, we also found that the vulnerability shows sharp seasonal variation due to the change of groundwater recharge. The change of the vulnerability is found to be most peculiar during summer with the highest recharge rate and winter with the lowest. Our research indicates that numerical modeling can be a useful tool for temporal as well as spatial interpolation of the depth to water when the number of the observed data is inadequate for the vulnerability assessments through the conventional techniques.

Implementation of Management System for Contamination Vulnerability Calibration of the Ground Water by an Object-oriented Geographic Data Model (객체지향 지리 데이터 모델에 의한 지하수의 오취약성 분석을 위한 관리시스템 구현)

  • Lee, Hong-Ro
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.101-112
    • /
    • 2003
  • This paper designs and implements the management system that can calibrate the contamination vulnerability of the ground water, using an object oriented data model. Geographic-objects are specified by features extracted from an applicable geographic domain, and geographic-fields are defined by chemical factors extracted from each driven water. To show the topological relationships among the geographic-objects and the geographic-fields, this paper attach the weight and the ratio of the drastic model to chemical factors represented on the land use digital map and the ground water digital map. The geographic feature class, administrative boundary class, land use class and driven water class consist of a class composition hierarchy for evaluating the convenient contamination vulnerability calibration with spatial relationships among the well objects. Therefore, this management system for evaluating the contamination vulnerability can also contribute to the application of other natural environments.

  • PDF

Assessing Groundwater Vulnerability Using DRASTIC Method and Groundwater Quality in Changwon City (DRASTIC과 지하수 수질에 의한 창원시 지하수 오염취약성 평가)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Moo-Jin;Kim In-Soo;Hwang Han-Seok
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.631-645
    • /
    • 2004
  • This study assesses groundwater vulnerability to contaminants in industrial and residential/commercial areas of the city of Changwon, using DRASTIC technique and groundwater data. The DRASTIC technique was originally applied to situations in which the contamination sources are at the ground surface, and the contaminants flow into the groundwater with infiltration of rainfall. Mostly the industrial area has higher DRASTIC indices than the residential/commercial area. However, a part of the residential/commercial area having much groundwater production and great drawdown is more contaminated in groundwater than other industrial and the residential/commercial areas even if it has lowest DRASTIC indices in the study area. It indicates that groundwater contamination in urban areas can be closely related to excessive pumping resulting in a lowering of the water level. The correlation coefficient between minimum DRASTIC indices and the degree of poor water quality for 10 districts is as low as 0.40. On the other hand, the correlation coefficients between minimum DRASTIC indices and the groundwater discharge rate, and between minimum DRASTIC indices and well distribution density per unit area are 0.70 and 0.87, respectively. Thus, to evaluate the potential of groundwater contamination in urban areas, it is necessary to consider other human-made factors such as groundwater withdrawal rate and well distribution density per unit area as well as the existing seven DRASTIC factors.

Modification of Seawater Intrusion Vulnerability Assessment for Coastal Aquifer of Jeju Island, Korea (제주도 지하수 해수침투 취약성 평가 개선)

  • Chang, Sun Woo;Kim, Min-Gyu;Chung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.2-2
    • /
    • 2020
  • 해안 지역은 종종 도시화, 인구 증가 및 환경 오염으로 인해 해안대수층의 지하수의 염도가 증가하는 현상인 해수침투가 발생한다. 본 연구는 국내 제주도 해안대수층을 대상으로 GIS 기법을 이용한 수리지질학적 변수의 지수화 방식으로 해안대수층의 해수침투 취약성 평가를 적용하였고 국내 해수침투 특성을 더욱 명확하게 반영할 수 있도록 취약성 평가 방식을 개선하고자 하였다. 취약성 평가를 수행하기 위해 대수층 특성, 수리전도도 특성, 지하수위, 해안으로부터의 거리, 염도분포, 대수층 깊이 등의 자료를 확보하여 취약성 평가의 주요 인자로 활용하였으며 특히 다년간에 걸친 국내 해수침투 관측망 관측 자료를 사용한 것을 특징으로 한다. 취약성 평가 인자 중 지하수위를 지수화 하는 과정에서 지하수위의 평가 구간 범위를 개선하였고, 염도 적용 방식을 해수침투 관측망 데이터 유형인 전기전도도를 이용한 새로운 평가 구간 범위를 설정하였다. 연구 결과 기존에 해수침투가 발생했던 지역에서의 취약성 지수가 높게 나타났으며 취약성 평가의 개선 작업 결과에 의해 지속적인 지하수위 하강이 발생하고 계절적 요인으로 해수침투가 발생하는 지역에서 취약 지수의 증가세를 더욱 선명하게 구분할 수 있었다.

  • PDF

Hydrogeology and Vulnerability of Groundwater Contamination of a Mountainous Area in Kangwon Province (강원도 흥호리 지역 암반대수층의 수리지질 및 지하수 오염취약성 예비조사)

  • 이진용;이강근;정형재;배광옥
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.27-38
    • /
    • 2000
  • We hydrogeologically studied a mountainous area and its vulnerability to groundwater contamination. Groundwater flow and recharge occur mainly through a network of fractures in this areaTransmissivity and storativity obtained from slug, slug interference, and pumping tests range from 3.2$\times$10$^{-3}$ to 2.0$\times$10$^{-2}$$m^2$/min and 1.3$\times$10$^{-7}$ to 9.15$\times$10$^{-4}$, respectively. The groundwater was contaminated bylivestock activities in the upgradient. The groundwater in the downgradient residential area wasthreatened by the upgradient livestock activities.

  • PDF

Landfill Hazard Assessment Model Based on the Analytic Hierarchy Process (위배분석과정(位陪分析過程)에 근거한 매립지 유해성 평가 모형)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • 본 연구에서는 침출수를 비롯한 매립지의 각종 오염물질 배출로 수자원이 오염되어 피폭체의 피해가 빈발하는 문제를 해결하기 위해서, 매립지의 상대적 유해성을 평가하여 한정된 환경관리 예산의 합리적 배분을 위한 우선순위를 결정할 수 있는 의사결정 지원도구로서 LHR(Landfill Site Hazard Ranking)모형을 개발했다. LHR모형은 다요소의사결정(多要素意思決) 기법에 정성적 위해성(危害性) 평가기법을 접맥시켜 주관적 가중치를 모형에 반영한 가치내재화(價値內在化) 모형이다. LHR모형은 피폭체의 주요 피폭경로를 지하수 이동경로와 지표수 이동경로로 보았으며, 각 이동경로별로 누출 가능성, 폐기물 특성 및 피폭체 특성으로 요소범주를 3종류로 구분하여 폐기물의 독성이나 매립량같은 특성이 매립지의 수리지질학적 요소 및 자연지리적 요소에 의해 결정되는 오염물질의 누출 가능성을 통해 매립지 주변의 지역주민과 취약한 수생태계 같은 피폭체에 끼치는 매립지의 유해성을 상대적으로 평가했다. 그리고 LHR모형에서는 매립지 유해성을 공기 이동경로 및 사회경제적 측면에서도 평가하기 위해 매립지 이격거리별 토지이용 형태의 유해성을 평가했다. 그리고 각 평가요소별 가중치는 위계분석과정(位階分析過程)의 쌍대비교법(雙對比較法)에 의하여 할당했으며, 민감도 분석으로 LHR모형을 검증했다.