• Title/Summary/Keyword: 지하도로

Search Result 1,027, Processing Time 0.025 seconds

Analysis of Digital Vision Measurement Resolution by Influence Parameters (디지털 영상 계측 기술의 영향인자에 따른 정밀도 분석)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Lee, Seung-Do;Lee, Chung-In
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.109-116
    • /
    • 2007
  • This study has reviewed the applicability of displacement measurement by using a digital vision technique based on typical photogrammetric methods. In this study, a series of experimental measurements have been performed in order to improve the accuracy of digital vision measurement by establishing criteria of factors of various vision measurements. It is found that the digital vision measurement tends to show higher accuracy as the image size(resolution) and the focal length become larger and the distance to an object becomes closer. It is also observed that measurement error decreases with processing as many images as possible in various angles. Applicability on high-resolution displacement measurement is proved by applying the digital vision measurement developed in this study to a large scale loading test of concrete lining.

서울 남부순환 도로, 관악터널 설계

  • 지왕률;박성록;황기수;정해성;이철수
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2002.03a
    • /
    • pp.19-26
    • /
    • 2002
  • 서울시에 건설될 새로운 내부 남부순한 도로는 제2 성산대교와 서쪽의 주요 고속화 도로를 연결하는 초고속 도로망을 구축할 것이다. 노선연장은 지하구조물 10.4km를 포함하여 총 34.8km에 달한다. 도로망이 완성되면 수도 서울 중심가의 심한 교통체증은 상당부분 완화 될 것이다. 공사비 7000억원에 이르는 대규모의 서울 남부순환 도로는 3차선 병렬터널 3개 공구를 포함하는 것으로 계획되어졌다. 이들 터널은 3차선, 일방향, 병렬터널로서 계곡부를 관통하며 굴착공법은 대부분 발파공법으로 계획되어져 있다. 가장 긴 관악터널은 지질조건이 복잡하며 따라서, 이런 지반에 적용성이 좋은 발파공법에 의한 굴착으로 계획되어졌다. 특히, 갱구부는 지질상태가 매우 불량하여 풍화암 자연상태로 설계하는 것이 불가능하였다. 설계자들은 터널 화재와 교통사고 등과 같은 터널내에서의 긴급상황에 대한 최적의 대책 수립에 중점을 두어야만 했다. 관악 터널 상부에 위치한 수로관을 통과하는 방법을 찾는 것이 당면 최대 관건이었다. 또한, 갱구부 주변지역의 환경을 보존하고 현장의 자연적인 아름다움 을 유지하기 위하여 굴착량을 최소화하는 공법선정이 중요하였다.

  • PDF

제주도 지하수 문제에서 물리탐사의 역할

  • 이상규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1994.07a
    • /
    • pp.75-91
    • /
    • 1994
  • 제주도의 지하수는 상위지하수, 기저지하수, 연안용출수, 심부지하수 등으로 분류될 수 있다. 이들을 효율적으로 활용하고 또 보존, 관리하기 위하여는 탐사가 선행되어야 한다. 구성물질의 물성대비를 탐사의 원리로 하는 물리탐사는 간접적 정보를 제공한다는 점에서 조사단계에서 흔히 간과되어 왔으나, 지표 상부에서 지하 심부까지의 정보를 제공할 수 있는 유일한 탐사방법이라는 점에서 그 중요성이 재인식되어야 한다. 물리탐사는 비파괴적인 탐사방법일 뿐 아니라 날은 탐사범위를 상대적으로 짧은 기간에 탐사할 수 있는 경제성을 갖고 있기 때문에 결과적으로 조사단계에서 소요되는 총비용을 현저히 줄일 수 있기 때문이다. 필자는 여기서, 제주도의 지하수문제에 대하여 물리탐사가 담당할 수 있는 역할에 대하여 최근의 탐사실례들을 통하여 기술하고자 한다. 이들 중에는 '복합 물리탐사방법에 의한 지하수탐사', '항공원격탐사에 의한 해안 용출수탐사', '물리탐사에 의한 해수침입영역 조사' 그리고 지하수 부존과 밀접한 관련이 있는 '지질구조선 탐사' 등이 포함되어 있다. 후속의 지질조사와 시추조사에서 얻은 직접적 정보들이 물리탐사에 의한 해석에 feedback 될 수 있는 조사체계를 갖춘다면 향후 제주도의 지하수와 관련한 문제에 물리탐사가 보다 효과적으로 사용될 수 있을 것임을 강조한다.

  • PDF

Geochemical Modeling of U Solubility in Groundwater Conditions (지하수에서의 우라늄 용해도에 대한 지화학적 모델링 연구)

  • Cho, Young-Hwan;Han, Kyung-Won;Suh, In-Suk
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 1990
  • Uranium solubilities have been calculated for a range of conditions expected in a nuclear waste disposal repository. Variables taken into consideration include the pH and Eh range expected for deep groundeaters, the effect of the composition of groundwater. The model used in these calculations is based on the assumption of chemical equilibrium. Calculations show that the major variables influencing uranium solubility under the repository conditions are pH and Eh. The results of this study can be applied to an assessment of the nuclear waste disposal.

  • PDF

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks(I) -Comparative Study of Groundwater Recharge- (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(I) -지하수 유입량의 비교 연구-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.81-102
    • /
    • 1992
  • Landslides on hillside slopes with shallow soil cover over a sloping bedrock are frequently caused by increases in porewater pressures following of heavy rainfall and it is one of the most important factors of assessing the risk of landslide to predict the groundwater level fluctuations in hillslopes. This paper presents the comparative study of three unsaturated flow models developed by Sloan et al., Reddi, L.N., and Thomas, H.A., Jr., respectively, which are used to predict the increase of groundwater levels in hillside slopes. The parametric study for each of models is also presented. The Kinematic Storage Model(KSM) developed by Sloan et at. is utilized to predict the saturated groundwater flow. They are applied to the two sites in Korea so as to examine the possibility of use in the groundwater flow model. The results show that two unsaturated models developed by Sloan et al. and Reddi, L. N. are largely affected by the uncertain parameters like saturated permeability and saturated water content : the abed model has the potential of use in unsaturated flow model with the optimal estimates of model parameters utilizing available optimization techniques. And it is also found that the KSM must be modified to account for the time delay effect in the saturated zone. The results of this paper are able to be utilized in developing the predictive model of groan dwater level fluctuations in a hillslope.

  • PDF

A study on the feasibility assessment model of urban utility tunnel by analytic hierarchy process (계층의사분석 기법을 적용한 도심지 공동구 타당성 평가모델 연구)

  • Chung, Jee-Seung;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.131-144
    • /
    • 2018
  • The urban center of a large city has a high concentration ratio of population, commerce, and traffic. Therefore, the expected effect is high from the introduction of the urban utility tunnel and it also has sufficient economic feasibility considering life cycle cost. Moreover, the construction cost can be greatly reduced if it is included in a large underground development such as a subway or a complex transfer center construction. However, it is not reflected in actual underground development plan. When planning a urban utility tunnel in Korea, it is expected to have difficulties such as the cost of relocation of the existing Life-Line, conflicts among the individual facility institutions, procurement of construction resources and sharing. Furthermore, it is possible to promote the project only if a consensus is drawn up by a collective council composed of all facilities and project developers. Therefore, an optimal alternative should be proposed using economic analysis and feasibility assessment system. In this study, the analytic hierarchy process (AHP) is performed considering the characteristics of urban areas and the importance of each indicator is quantified. As a result, we can support reasonable design capacity optimization using the feasibility assessment system.

A Study on the Optimization Algorithm for Correlation Analysis of the Underground Utility Structure Density in Urban Areas and Recorded Ground Subsidence (도심지 지중매설물 밀집도와 이력지반함몰의 상관성 분석을 위한 최적화 알고리즘에 관한 연구)

  • Choi, Changho;Kim, Jin-Young;Baek, Sung-Ha;Kang, Jae Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.77-87
    • /
    • 2021
  • Several studies have been conducted to analyze, predict, and prevent the risk of ground subsidence occurring in urban areas. Nevertheless, there is insufficient research effort on risk analysis that utilizes the correlation between the density of underground structures (i.e., the spatial quantity of buried objects installed in the ground around the interested area) and the occurrence of ground subsidence. In this paper, a study was conducted to analyze the line density of underground structures using GIS-based spatial information data, and to link this with the recorded ground subsidences. An optimization algorithm was developed to maximize the correlation between the line density of 29 recorded ground subsidences and 6 types of underground structures that occurred between 2010 and 2015 for the analysis area. The concept of normalized line density was also proposed for the analysis. The normalized line density of the analysis area was divided into five grades (Grade 1: lowest, Grade 5: highest). When the optimization algorithm was applied, the case where the normalized line density was Grade 4 or higher at the location of the recorded ground subsidences was about > 80%. It is thought that the density analysis result of underground facilities can be applied to the ground subsidence risk analysis by using the proposed optimization algorithm.

A Study of Ground Subsidence Risk Grade Analysis Based on Correlation Between the Underground Utility Structure Density and Recorded Ground Subsidence (지중매설물 밀집도와 이력지반함몰의 상관성 분석을 통한 위험도 등급 분석 기법에 관한 연구)

  • Choi, Changho;Kim, Jin-Young;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.69-77
    • /
    • 2022
  • Several studies have been conducted to analyze the risk of ground subsidence occurring in urban areas. Recently, the correlation between the density of underground utilities (i.e., the quantity of buried utilities in the analysis area) and the recorded ground subsidence has been explored to analyze such risk through. Choi et al. (2021) proposed an algorithm to optimize the correlation between the ground subsidence and normalized linear density of underground pipelines. In this study, the optimization algorithm was modified for analysis based on the risk grade. The analysis results using the modified optimization algorithm were compared with the correlation analysis results between the density of underground utilities and recorded ground subsidence presented by Choi et al. (2021). Compared with Choi et al. (2021), three analysis results showed equal or higher accuracy in the correlation analysis with recorded ground subsidence according to risk grade. In particular, for R100, it was divided into five grades and compared with the ratio of the recorded ground subsidence that occurred in grades 4 or higher. As a result, Choi et al. (2021) showed that 86% of recorded ground subsidence occurred in grades 4 or higher, whereas this study showed 93%. It was confirmed that the accuracy of the modified optimization algorithm was improved. The modified optimization algorithm can be applied to develop a ground subsidence risk map for each grade in an urban area, which can be used as basic data for decision-making for underground utility maintenance.

Integrity evaluation of rock bolts in the field by using hammer-impact reflection method (해머 타격 반사법을 이용한 현장 록볼트 건전도 평가)

  • Yu, Jung-Doung;Bae, Myeong-Ho;Lee, Yong-Jun;Min, Bok-Ki;Lee, In-Mo;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • Rock bolts and shotcrete play a crucial role as a main support system in the underground space. Thus, the safety of the underground space may be affected by the defect of rock bolts. In order to evaluate the rock bolt integrity by using non-destructive technique, the transmission method of the guided ultrasonic waves, which are generated by using the piezo disk elements has been successfully performed. The energy generated by the piezo disk elements, however, is not enough for the rock bolts in the field. In addition, the piezo disk elements should be installed at the end of the steel bar during construction of the rock bolts. The purpose of this study is the devolvement of the reflection method, which may generate enough energy, and the application in the field rock bolts. Both laboratory and field tests are carried out. The guided ultrasonic waves with high energy are generated by the hammer impact with the center punch, and the AE sensor is used to measure the reflected guided waves. The received guided waves are analyzed by the wavelet transform. The peak value of the wavelet transform produces the energy velocity, which is used for the evaluation of the rock bolt integrity. The energy velocity increases with an increase in the defect ratio in both laboratory and field rock bolts. This study demonstrates that the hammer-impact reflection method may be a suitable method for the evaluation of the rock bolt in the field.

Analysis of Groundwater Variations using the Relationship Between Groundwater use and Daily Minimum Temperature in a Water Curtain Cultivation Site (수막재배지역에서 일최저기온과 지하수 이용량의 상관관계를 이용한 지하수위 변화 분석)

  • Chang, Sunwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • Water curtain cultivation (WCC) systems in Korea have depleted water resources in shallow aquifers through massive pumping of groundwater. The goal of this study is to simulate the groundwater variations observed from massive groundwater pumping at a site in Cheongweon. MODFLOW was used to simulate three-dimensional regional groundwater flow, and the SWAT (Soil and Water Assessment Tool) watershed hydrologic model was employed to introduce temporal changes in groundwater recharge into the MODFLOW model input. Additionally, the estimation method for groundwater discharge in WCC areas (Moon et al., 2012) was incorporated into a groundwater pumping schedule as a MODFLOW input. We compared simulated data and field measurements to determine the degree to which winter season groundwater drawdown is effectively modeled. A simulation time of 107 days was selected to match the observed groundwater drawdown from November, 2012 to March, 2013. We obtained good agreement between the simulated drawdown and observed groundwater levels. Thus, the estimation method using daily minimum temperatures, may be applicable to other cultivation areas and can serve as a guideline in simulating the regional flow of riverside groundwater aquifers.