• Title/Summary/Keyword: 지하구조

Search Result 1,748, Processing Time 0.027 seconds

Plane-wave Full Waveform Inversion Using Distributed Acoustic Sensing Data in an Elastic Medium (탄성매질에서의 분포형 음향 센싱 자료를 활용한 평면파 전파형역산)

  • Seoje, Jeong;Wookeen, Chung;Sungryul, Shin;Sumin, Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.214-216
    • /
    • 2022
  • Distributed acoustic sensing (DAS), an increasingly growing acquisition technique in the oil and gas exploration and seismology fields, has been used to record seismic signals using optical cables as receivers. With the development of imaging methods for DAS data, full waveform inversion (FWI) is been applied to DAS data to obtain high-resolution property models such as P- and S-velocity. However, because the DAS systems measure strain from the phase distortion between two points along optical cables, DAS data must be transformed from strain to particle velocity for FWI algorithms. In this study, a plane-wave FWI algorithm based on the relationship between strain and horizontal particle velocity in the plane-wave assumption is proposed to apply FWI to DAS data. Under the plane-wave assumption, strain equals the horizontal particle velocity, which is scaled by the velocity at the receiver position. This relationship was confirmed using a numerical experiment. Furthermore, 4-layer and modified Marmousi-2 velocity models were used to verify the applicability of the proposed FWI algorithm in various survey environments. The proposed FWI was implemented in land and marine survey environments and provided high-resolution P- and S-velocity models.

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

Effective 3-D GPR Survey for the Exploration of Old Remains (유적지 발굴을 위한 효율적 3차원 GPR 탐사)

  • Kim, Jung-Ho;Yi, Myeong-Jong;Son, Jeong-Sul;Cho, Seong-Jun;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.262-269
    • /
    • 2005
  • Since the buried cultural relics are three-dimensional (3-D) objects in nature, 3-D survey is more preferable in archeological exploration. 3-D Ground Penetrating Radar (GPR) survey based on very dense data in principle, however, might need much higher cost and longer time of exploration than other geophysical methods commonly used for the archeological exploration, such as magnetic and electromagnetic methods. We developed a small-scale continuous data acquisition system which consists of two sets of GPR antennas and the precise positioning device tracking the moving-path of GPR antenna automatically and continuously. Since the high cost of field work may be partly attributed to establishing many profile lines, we adopted a concept of data acquisition at arbitrary locations not along the pre-established profile lines. Besides this hardware system, we also developed several software packages in order to effectively process and visualize the 3-D data obtained by the developed system and the data acquisition concept. Using the developed system, we performed 3-D GPR survey to investigate the possible historical remains of Baekje Kingdom at Buyeo city, South Korea, prior to the excavation. Owing to the newly devised system, we could obtain 3-D GPR data of this survey area having areal extent over about $17,000m^2$ within only six-hours field work. Although the GPR data were obtained at random locations not along the pre-established profile lines, we could obtain high-resolution 3-D images showing many distinctive anomalies, which could be interpreted as old agricultural lands, waterways, and artificial structures or remains. This cast: history led us to the conclusion that 3-D GPR method is very useful not only to examine a small anomalous area but also to investigate the wider region of the archeological interests.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

Effects of Several Amendment Materials on Salt Accumulation and Kentucky Bluegrass (Poa pratensis L.) Growth in Sand Growing Media Established Over the Reclaimed Saline Soil (염해지 토양을 기반으로 조성된 모래 지반구조에서 토양개량제 종류에 따른 토양내 염류 집적과 켄터키 블루그래스(Poa pratensis L.)의 생육)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.208-216
    • /
    • 2011
  • The purpose of this study was to find soil-amendment materials those support the growth of Kentucky bluegrass and reduce salt accumulation at the sand based growing media in saline conditions. Rootzone profile in columns consisted of 20 cm of top soil, 20 cm coarse sand as capillary rise interruption layer and 10 cm reclaimed paddy soil as the base of the profile. Top soils were mixtures of dredged sand (DS) and amendment with compositions of 90% sand + 10% peat moss (SP), 80% sand + 10% soil + 10% bottom ash (SSoBa), 80% sand + 20% soil (SSo), 90% sand + 5% peat + 5% zeolite (SPZ), and 80% sand + 20% bottom ash (SBa). The top soil mixtures of DS and amendments were treated with and without gypsum (Gp). The columns were soaked into 5 cm depth saline water reservoir with the salinity level of $3-5dSm^{-1}$. Irrigation of $2dSm^{-1}$ saline water with rate of $5.7mm\;day^{-1}$ was applied by 3 day interval. Application of zeolite decreased SAR, application of gypsum decreased ECe of the sand amended by peat + zeolite and decreased the SAR of sand amended by bottom ash. The SP and SSoGp resulted in higher clipping dry weight of Kentucky bluegrass. The SSoGp and SPZGp showed longer root lengths. The SP and SBaGp showed higher visual quality. Addition of gypsum to soil and bottom ash treatments resulted in the increased shoot growth, whereas additional gypsum to the treatments of peat, soil and zeolite increased the root growth of Kentucky bluegrass.

A Study on Hydromorphology and Vegetation Features Depending on Typology of Natural Streams in Korea (국내 자연하천의 유형별 물리적 구조 및 식생 특성 연구)

  • Kim, Hyea-Ju;Shin, Beom-Kyun;Kim, Won
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.215-234
    • /
    • 2014
  • The purpose of this study is to identify the type and characteristics of the domestic natural streams in order to establish a basis for stream restoration and evaluation. To this end, 95 domestic natural stream areas, which have various natural environments, were selected except for the province of island and then the characteristics of natural environment, hydromorpholoy, plant and vegetation were investigated and analyzed in each stream area. As a result, 95 stream areas were classified into total 24 types according to 3 criteria such as stream size (4 types), altitude (3 types), bed material (5 types). Depending on altitude class that is the environmental factor showing the highest correlation with each stream types, the emergence of vegetation and plant, 24 stream types were reclassified into 3 types such as lowland (altitude less than 200m), mountain (altitude from 200m to 500m), highland (altitude more than 500m), and hydromorpholoy, plant and vegetation characteristics of each stream type were compared. First, when compared to the mountain and highland streams, the typical features of lowland streams were as follows: Stream size was large but bed material size was small and there were many valley forms where flood plane were developed well. In addition, the more large stream size was, the more cross-section width variability, bars and sinuosity were in good conditions. In lowland stream, representative vegetation community was Salix koreensis community. On the other hand, when compared to the lowland streams, the typical features of mountain and highland streams were as follows: Stream size was small but bed material was coarse-grained and its size was large. Mountain and highland streams valley form where flood plane was not developed well was narrow, and sinuosity and bars development were weak. Representative vegetation communities of mountain streams were Quercus serrata -, Quercus variabilis -, Styrax japonica community and representative vegetation communities of highland streams were Pinus densiflora -, Quercus mongolica -, Fraxinus rhynchophylla community.

A Numerical Study of Hydraulic Fractures Propagation with Rock Bridges (Rock bridges를 고려한 수치 해석적 수압파쇄 균열거동 연구)

  • 최성웅
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.447-456
    • /
    • 2000
  • Rock bridge in rock masses can be considered as one of several types of opening-mode fractures, and also it has been known to have a great influence on the stability of structures in rock mass. In the beginning of researching a rock bridge it used to be studied only in characteristics of its behavior, as considering resistance of material itself. However the distribution pattern of rock bridges, which can affect the stability of rock structures, is currently researched with a fracture mechanical approach in numerical studies. For investigating the effect of rock bridges on the development pattern of hydraulic fractures, the author analyzed numerically the stress state transition in rock bridges and their phenomena with a different pattern of the rock bridge distributions. From the numerical studies, a two-crack configuration could be defined to be representative of the most critical conditions for rock bridges, only when cracks are systematic and same in their length and angle. Moreover, coalescence stresses and onset of propagation stresses could be known to increase with decreasing s/L ratio or increasing d/L ratio. The effect of pre-existing crack on hydraulic fracturing was studied also in numerical models. Different to the simple hydraulic fracturing modeling in which the fractures propagated exactly parallel to the maximum remote stress, the hydraulic fractures with pre-existing cracks did not propagate parallel to the maximum remote stress direction. These are representative of the tendency to change the hydraulic fractures direction because of the existence of pre-existing crack. Therefore s/L, d/L ratios will be identical as a function effective on hydraulic fractures propagation, that is, the K$_1$ value increase with decreasing s/L ratio or increasing d/L ratio and its magnification from onset to propagation increases with decreasing s/L ratio. The scanline is a commonly used method to estimate the fracture distribution on outcrops. The data obtained from the scanline method can be applied to the evaluation of stress field in rock mass.

  • PDF

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.

The Status Review on Excavation and Maintenance of the Baekje Royal Tombs (백제 왕릉의 조사와 정비 현황 검토 - 백제역사유적지구를 중심으로 -)

  • Hwanhee, KIM;Naeun, LEE
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.4
    • /
    • pp.260-285
    • /
    • 2021
  • This article deals with the current status of investigation of the royal tombs of Baekje (Gongju Songsan-ri Tomb, Buyeo Neungsan-ri Tomb, Iksan Ssangneung) from the Japanese colonial period to the present. A review of the maintenance status is also conducted to see if the survey content was actually reflected in the restoration maintenance of the ruins. First, the structure scale and characteristics of the royal tombs of Baekje during the Woongjin and Sabi periods were identified by examining the survey content organized by period and feature. Through the recent re-excavation survey, it was confirmed that the results of the research during the Japanese colonial period were being verified. Next, before examining the maintenance status of the Baekje royal tombs, related content about maintenance of laws and regulations were extracted to establish the maintenance standards. It was confirmed that the most importance part of maintenance is 'maintenance of the original form' without compromising the authenticity of cultural properties. Based on these criteria, the maintenance status was reviewed. The main part of the burial tomb is located underground, so maintenance is mainly made around the tomb, which is the upper structure. However, most of the original burial mounds have been lost or damaged, so it is difficult to determine their original form. In fact, constant changes in the size and location of tombs from the Japanese colonial period to the present were confirmed in the Songsan-ri and Neungsan-ri tombs, meaning that the current maintenance status is problematic. On the other hand, in the case of Ssangneung, not only are the tombs relatively intact, but there are also few changes in the records, so it seems that maintenance was carried out that preserved the original form of the tombs. Therefore, the maintenance of tombs in the future should be based on 'maintaining the original form', but it is recommended that the 'education and utilization' plan be prepared after determining whether or not to restore the tomb and the degree of restoration.

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF