• Title/Summary/Keyword: 지하공동 규모

Search Result 80, Processing Time 0.025 seconds

Stability Analysis on the Substructure of Abutment in Limestone Basin (석회암층 교대 하부 구조물의 안정성 해석)

  • 최성웅;김기석
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.120-129
    • /
    • 2002
  • Natural cavitied were found at shallow depth during construction of a huge bridge in Cambro-Ordovician Limestone Basin in the central part or Korea. The distribution patterns of cavities in this area were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map focusing the route of the Proposed highway. It suggested that there were three faults in this wet and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied first on the specific area that was selected by results from the geological survey. Many evidences far cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target wet which was focused by results from the electrical resistivity Prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced Based on the project result, finally, most of fecundations far the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

Proposal of the Development Direction on the Special Act on Underground Safety Management for Preparation of the Proactive Underground Safety Management System (선제적 지하안전관리체계 마련을 위한 지하안전관리에 관한 특별법의 발전방향 제시)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.17-27
    • /
    • 2018
  • Sinkholes have occurred in various places around the world and concerns about public safety have been raised in recent years. Particularly, a ground subsidence may occur due to a variety of conditions when developing underground spaces. Ground subsidence refers to the sinking of the Earth's surface caused by the loss of the soil constituting ground due to a certain artificial cause in the ground. Ground subsidence is induced by artificial causes such as the leakage of water supply/sewage pipes and groundwater disturbance, and it is different from a sinkhole, where the sinking of the Earth's surface is induced by the cavity formed due to the melting of limestone in the ground with limestone bedrock. In recent underground development in the urban areas of Korea, damages to surrounding buildings have frequently led to many difficulties with civil complaints and compensation issues, and the collapse of some buildings has resulted in the loss of lives and property. Accordingly, the central government has legislated the Special Act on Underground Safety Management, which will take effect from January 1, 2018. This law specifies an underground safety management system for securing underground safety, under which underground safety impact assessment is performed for projects involving underground excavation work that exceeds a certain size, and safety inspection is regularly performed for underground facilities and the surrounding ground. In this study, the contents of the special act on underground safety management are reviewed, and the direction of development of underground safety policy for preparing preemptive underground safety management preparation and response system is suggested.

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.

Effective Geophysical Methods in Detecting Subsurface Caves: On the Case of Manjang Cave, Cheju Island (지하 동굴 탐지에 효율적인 지구물리탐사기법 연구: 제주도 만장굴을 대상으로)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Lee, Gyu-Ho;Rim, Hyoung-Rea;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.408-422
    • /
    • 2000
  • Multiple geophysical methods were applied over the Manjang cave area in Cheju Island to compare and contrast the effectiveness of each method for exploration of underground cavities. The used methods are gravity, magnetic, electrical resistivity and GPR(Ground Pentrating Radar) survey, of which instruments are portable and operations are relatively economical. We have chosen seven survey lines and applied appropriate multiple surveys depending on the field conditions. In the case of magnetic method. two-dimensional grid-type surveys were carried out to cover the survey area. The geophysical survey results reveal the characteristic responses of each method relatively well. Among the applied methods, the electric resistivity methods appeared to be the most effective ones in detecting the Manjang Cave and surrounding miscellaneous cavities. Especially, on the inverted resistivity section obtained from the dipole-dipole array data, the two-dimensional distribution of high resistivity cavities are revealed well. The gravity and magnetic data are contaminated easily by various noises and do not show the definitive responses enough to locate and delineate the Manjang cave. But they provide useful information in verifying the dipole-dipole resistivity survey results. The grid-type 2-D magnetic survey data show the trend of cave development well, and it may be used as a reconnaissance regional survey for determining survey lines for further detailed explorations. The GPR data show very sensitive response to the various shallow volcanic structures such as thin spaces between lava flows and small cavities, so we cannot identify the response of the main cave. Although each geophysical method provides its own useful information, the integrated interpretation of multiple survey data is most effective for investigation of the underground caves.

  • PDF

Numerical Analysis of Railway Roadbed Stability with Respect to Underground Cavities and Rock Condition: A Case Study of Shafts at Majang Mine (전산해석을 통한 지하 공동 및 암반 조건에 따른 철도지반 안정성 평가: 마장광산 갱도를 대상으로)

  • Jang, Kyunghwan;Lee, Dongwon;Min, Kyungnam;Chung, Chanmook;Yu, Jaehyung;Lee, Gyeseung
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.295-306
    • /
    • 2021
  • This study used numerical modeling to investigate the stability of railway roadbed in areas with various underground cavities and rock conditions associated with mining activities. It compared combined loads from both passenger and freight trains with loads from only passenger trains. Stability was assessed with reference to the Korean government standards for railway subsidence allowance and railway warping repair. Sufficient stability regarding the railway subsidence allowance standard was not achieved when cavities were at depths of <5 m. The criteria for requiring railway warping repair were met when cavities were at depths of <15 m, depending on the rock fracture condition. This study provides the first report on systematic analysis land subsidence related to cavity size and rock fracture conditions associated with mining activities. We expect that this study could serve as an important reference for railway construction in mining areas.

Stability Analysis of Multiple Thermal Energy Storage Caverns Using a Coupled Thermal-Mechanical Model (열-역학적 연계해석 모델을 이용한 다중 열저장공동 안정성 분석)

  • Kim, Hyunwoo;Park, Dohyun;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.297-307
    • /
    • 2014
  • Cavern Thermal Energy Storage system stores thermal energy in caverns to recover industrial waste heat or avoid the sporadic characteristics of renewable-energy resources, and its advantages include high injection-and-extraction powers and the flexibility in selecting a storage medium. In the present study, the structural stability of rock mass pillar between these silo-type storage caverns was assessed using a coupled thermal-mechanical model in $FLAC^{3D}$. The results of numerical simulations showed that thermal stresses due to long-term storage depended on pillar width and had significant effect on the pillar stability. A sensitivity analysis of main factors indicated that the influence on the pillar stability increased in the order cavern depth < pillar width < in situ condition. It was suggested that two identical caverns should be separated by at least one diameter of the cavern and small-diameter shaft neighboring the cavern should be separated by more than half of the cavern diameter. Meanwhile, when the line of centers of two caverns was parallel to the direction of maximum horizontal principal stress, the shielding effect of the caverns could minimize an adverse effect caused by a large horizontal stress.

A Study on the Characteristics of Blasting Vibration from Different Excavation Methods in Underground Mine (지하채굴공동에서 굴착방법에 따른 발파진동의 특성에 관한 연구)

  • Kang Choo-Won;Ryu Pog-Hyun
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, most of limestone quarries have been not mined by open-pit mining but by underground excavation to reduce environmental pollution. As a result, the size of underground galleries became bigger to maintain mass-production close to open-pit mining. However, the scale of pillars and galleries as well as the excavation methods may induce a few adverse problems for the stability of a mined gallery. In this study, the nomogram analysis and the prediction of rock damage zone induced by blasting were carried out. The testing conditions include concurrent blasting of two adjacent galleries, concurrent blasting of a transport drift and a inclined shaft, sequential blasting of two galleries, and separate blasting for each gallery. For each testing condition, blast vibration velocity was measured and analyzed. From the prediction formulas for blast vibration velocity derived in this study, the maximum depth of rock damage zone induced by blasting were also predicted.

Thermal Performance Analysis of Multiple Thermal Energy Storage (TES) Caverns with Different Separation Distances Using Computational Fluid Dynamics (전산유체역학을 이용한 다중 열저장공동의 이격거리별 열적 성능 분석)

  • Park, Dohyun;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.201-211
    • /
    • 2014
  • In the present study, the thermal performance of multiple rock caverns for large-scale thermal energy storage (TES) was numerically investigated for different separation distances between the caverns through heat transfer analysis using a computational fluid dynamics code, FLUENT. The thermal performance of multiple caverns was assessed in terms of the thermal stratification within the caverns and the heat loss to the surroundings, and the heating characteristics of the rock around the caverns were investigated. The results of numerical simulation showed that there was little difference in thermal performance between multiple TES caverns with different separation distances when the surrounding rock was less heated and it reached thermal steady-state, which represent the thermal states of the surrounding rock at the early and long-term operational stages of the TES caverns, respectively. However, as the separation distance decreased, the rock between the caverns reached thermal steady-state more quickly, and thus the heat loss from the caverns tended to converge rapidly to the value of heat loss occurred under thermal steady-state conditions in the surrounding rock. This result implies that the operating cost of heating the surrounding rock (i.e., rock heating) can be reduced with a reduction in the separation distance between multiple caverns, and suggests that the separation distance should be determined by considering the operating cost of rock heating as well as the construction cost of the caverns.

Fracture Network Analysis of Groundwater Folw in the Vicinity of a Large Cavern (분리열극개념을 이용한 지하공동주변의 지하수유동해석)

  • 강병무
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.125-148
    • /
    • 1993
  • Groundwater flow in fractured rock masses is controlled by combined effects of fracture networks, state of geostafic stresses and crossflow between fractures and rock matrix. Furthermore the scaie dependent, anisotropic properties of hydraulic parameters results mainly from irregular paftems of fracture system, which can not be evaluated properly with the methods available at present. The basic assumpfion of discrete fracture network model is that groundwater flows only along discrete fractures and the flow paths in rock mass are determined by geometric paftems of interconnected fractures. The characteristics of fracture distribution in space and fracture hydraulic parameters are represented as the probability density functions by stochastic simulation. The discrete fracture network modelling was aftempted to characterize the groundwater flow in the vicinity of existing large cavems located in Wonjeong-ri, Poseung-myon, Pyeungtaek-kun. The fracture data of $1\textrm{km}^2$ area were analysed. The result indicates that the fracture sets evaluated from an equal area projection can be grouped into 6 sets and the fracture sizes are distributed in longnormal. The conductive fracture density of set 1 shows the highest density of 0.37. The groundwater inflow into a carvem was calculated as 29ton/day with the fracture transmissivity of $10^{-8}\textrm{m}^2/s$. When the fracture transmissivity increases in an order, the inflow amount estimated increases dramatically as much as fold, i.e 651 ton/day. One of the great advantages of this model is a forward modelling which can provide a thinking tool for site characterization and allow to handle the quantitative data as well as qualitative data.

  • PDF

현상설계경기 - 태백종합문화예술회관

  • Korea Institute of Registered Architects
    • Korean Architects
    • /
    • no.8 s.328
    • /
    • pp.112-115
    • /
    • 1996
  • 지난 6월 13일 태백시종합문화예술회관의 설계경기 당선작이 발표되었다. 당선작은 (주)예가람건축(구정회)의 안으로 선정되었으며 (주)이일건축(박광범), 이송건축(이영우)의 안이 각각 우수작으로 선정되었다. 태백시민의 다양한 문화욕구를 충족시키고 문화예술활동을 통한 사회공동체의식의 함양을 기하며, 시민화합의 전당으로서 다목적 종합시설을 갖춘 미래지향적인 종합문화예술회관을 설립한다는 취지로 진행된 이번 설계경기는 4월 15일 현장설명이 있었고 5월 31일 접수마감으로 총 7개 사무소가 작품을 제출했다. 당선된 (주)예가람건축은 20m의 대지차로 인한 진입시의 어려움을 진입교량을 설치함으로써 용이하게 유도한 것이 당선된 주된 요인이 되었다고 밝혔다. 지하 1층, 지상2층의 규모로 지어질 이 문예회관은 대공연장, 소공연장, 전시장, 관리, 사무시설로 구성되어 지는데 오는 98년을 완공목표로 하고 있다.

  • PDF