• Title/Summary/Keyword: 지하공간 정보모델

Search Result 102, Processing Time 0.023 seconds

Development of Subsurface Spatial Information Model with Cluster Analysis and Ontology Model (온톨로지와 군집분석을 이용한 지하공간 정보모델 개발)

  • Lee, Sang-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.170-180
    • /
    • 2010
  • With development of the earth's subsurface space, the need for a reliable subsurface spatial model such as a cross-section, boring log is increasing. However, the ground mass was essentially uncertain. To generate model was uncertain because of the shortage of data and the absence of geotechnical interpretation standard(non-statistical uncertainty) as well as field environment variables(statistical uncertainty). Therefore, the current interpretation of the data and the generation of the model were accomplished by a highly trained experts. In this study, a geotechnical ontology model was developed using the current expert experience and knowledge, and the information content was calculated in the ontology hierarchy. After the relative distance between the information contents in the ontology model was combined with the distance between cluster centers, a cluster analysis that considered the geotechnical semantics was performed. In a comparative test of the proposed method, k-means method, and expert's interpretation, the proposed method is most similar to expert's interpretation, and can be 3D-GIS visualization through easily handling massive data. We expect that the proposed method is able to generate the more reasonable subsurface spatial information model without geotechnical experts' help.

A Study on Development of 3D Data Model for Underground Facilities Using CityGML ADE (CityGML ADE를 이용한 3차원 지하시설물 데이터 모델 개발에 관한 연구)

  • Jeong, Da Woon;Shin, Dong Bin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.245-252
    • /
    • 2021
  • Underground facilities were constructed as needed by various management organizations, the result of which was the disordered and scattered underground spaces. This phenomenon can be viewed as the main cause of safety accidents in the underground space. To solve this problem, research on systematic construction and management of underground facilities should be conducted. Therefore, to improve the accuracy and the quality of information and to facilitate the systematic construction and management of underground facility information, this study aims to establish a 3D data model that conforms to international spatial information standards for pipeline underground facilities and to implement the data model to enable visualization. The result of this study can be used to improve the consistency of information not only between underground facilities, but also the correspondence between above ground and underground facilities. As such, this study has academic significance in that it presents an integrated data model that includes various objects in the ground and underground spaces and enables interoperability between diverse domain data.

Development of Subsurface Spatial Information Model System using Clustering and Geostatistics Approach (클러스터링과 지구통계학 기법을 이용한 지하공간정보 모델 생성시스템 개발)

  • Lee, Sang-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.64-75
    • /
    • 2008
  • Since the current database systems for managing geotechnical investigation results were limited by being described boring test result in point feature, it has been trouble for using other GIS data. Although there are some studies for spatial characteristics of subsurface modeling, it is rather lack of being interoperable with GIS, considering geotechnical engineering facts. This is reason for difficulty of practical uses. In this study, we has developed subsurface spatial information model through extracting needed geotechnical engineering data from geotechnical information DB. The developed geotechnical information clustering program(GEOCL) has made a cluster of boring formation(and formation ratio), classification of layer, and strength characteristics of subsurface. The interpolation of boring data has been achieved through zonal kriging method in the consideration of spatial distribution of created cluster. Finally, we make a subsurface spatial information model to integrate with digital elevation model, and visualize 3-dimensional model by subsurface spatial information viewing program(SSIVIEW). We expect to strengthen application capacity of developed model in subsurface interpretation and foundation design of construction works.

  • PDF

Development of MDA-based Subsurface Spatial Ontology Model for Semantic Sharing (시멘틱 공유를 위한 MDA기반 지하공간정보 온톨로지 모델 개발)

  • Lee, Sang-Hoon;Chang, Pyoung-Wuck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.121-129
    • /
    • 2009
  • Today, it is difficult to re-use and share spatial information, because of the explosive growth of heterogeneous information and specific characters of spatial information accumulated by diverse local agency. A spatial analysis of subsurface spatial informa-tion, one of the National Spatial Data Infrastructure, needs related spatial information such as, topographical map, geologic map, underground facility map, etc. However, current methods using standard format or spatial datawarehouse cannot consider a se-mantic hetergenity. In this paper, the layered ontology model which consists of generic concept, measuremnt scale, spatial model, and subsurface spatial information has developed. Also, the current ontology building method pertained to human experts is a expensive and time-consuming process. We have developed the MDA-based metamodel(UML Profile) of ontology that can be a easy under-standing and flexiblity of environment change. The semantic quality of devleoped ontology model has evaluated by reasoning engine, Pellet. We expect to improve a semantic sharing, and strengthen capacities for developing GIS experts system using knowledge representation ability of ontology.

  • PDF

Basic Study on Logical Model Design of Underground Facilities for Waterworks (상수도 지하시설물의 논리적 모델 설계에 관한 기초 연구)

  • Jeong, Da Woon;Yu, Seon Cheol;Min, Kyung Ju;Lee, Ji Yeon;Ahn, Jong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.533-542
    • /
    • 2020
  • This study proposes the logical data model design of a spatial data model that complies with international standards for the waterworks of underground facilities. We conduct a preliminary study related to underground spatial data standards and data models, and review the status of the existing systems. Then, we defined the conceptual design direction of underground spatial data model based on the problems and issues. Next, we defined the terminology, classification, semantic relationships of waterworks. Next, for the conceptual design of the underground spatial data model, we defined the naming criteria for all data according to the waterworks classification. In addition, a logical model is drawn and described using UML (Unified Modeling Language) diagrams. Based on the results, it is expected that the accuracy related to underground facilities data will be improved.

The Establishment Plan of Knowledge-Based Community through the 3-D National Underground Information DB Design and Utilization Review (3차원 국토지하정보 DB설계 및 활용성 검토를 통한 지식기반 커뮤니티 구축 방안)

  • Song, Seok-Jin;Jang, Yong-Gu;Kang, In-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2011
  • The national spatial information systems project which is promoted by our country has been extended from existing 2-D geographic information to 3-D spatial information as the basic geo-spatial Information. Most of the construction of the ground geo-spatial information are completed or underway, on the other hand, the construction of the subsurface geo-spatial information has difficulty caused by the lack of the drilling data characterizing the subsurface. In terms of the construction of the geo-spatial information of the subsurface, the subsurface information is constructed and managed by the domestic institutions, but the subsurface information which is possessed by the institutions was not shared mutually so it is managed inefficiently. This study presented the 3-D national underground information DB design by dividing with the ground DB item which configures the state of the ground and the soil DB item which configures the state of the soil in order to increase the efficiency of the construction of the subsurface spatial information. The implementation & utilization of the national underground information application technology was reviewed by applying the constructed DB to the actual model area, and the national underground information knowledge-based community establishment plan was presented.

Development of 3D Underground Utilities Processing and Partial Update Automation Technology - Focused on 3D Underground Geospatial Map - (3차원 지하시설물 가공 및 부분갱신 자동화 기술개발 - 지하공간통합지도 중심으로 -)

  • LEE, Min-Kyu;CHOI, Sung-Sik;JEON, Heung-Soo;KIM, Sung-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.1-15
    • /
    • 2020
  • As cities expand and underground utilities construction projects increase, there is an urgent need for a technology capable of analyzing the underground utilities network in 3D. Since 2015, 3D Underground Geospatial Map project, that has been integrating 15 types of underground information such as underground utilities, underground structures, and ground information, is in progress in S. Korea. However, the construction of 3D underground facilities is currently based on manual work and the logic for building a 3D model is very complicated. And it takes a lot of time and cost to process millions of large amounts of data per local governments. By presenting a framework on the processing and partial updating of the 3D underground utilities model, this paper aims to establish a plan to quickly build a 3D underground utility model at a minimum cost. The underground utilities processing and partial update automation technologies developed in this study are expected to be immediately applied to the 3D Underground Geospatial Map project.

A Study on the Construction of a TestBed for Performance Inspection of Underground Surveying Equipment (지하공간탐사기기 성능검사 테스트베드 구축 연구)

  • Bae, Kyoung Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.525-531
    • /
    • 2021
  • The importance and utilization of underground spatial is increasing due to urban concentration. And so underground spatial information is being built. Because underground spatial information is an important NSDI (National Spatial Data Infrastructure), the accuracy and performance of underground spatial exploration devices used for construction are managed separately. In accordance with the laws and regulations related to spatial information, the government is conducting performance tests for underground facilities surveying equipment. The current performance test site mainly targets metal pipelines, and there is no absolute position surveying inspection system. In this study, test bed model for performance inspection of underground space exploration equipment was presented. The test bed presented in this study can be used as a test site to supplement the limitations of the existing domestic test bed and to verify the performance of the latest equipment.

A Study on the Reference Model for Integrated Urban Spatial Information Management Platform (지능형 도시공간정보 통합플랫폼 참조모델 개발 연구)

  • Hong, Sang-Ki;Cho, Sung-Youn
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.4
    • /
    • pp.19-27
    • /
    • 2009
  • Integrated Urban Spatial Information Management Platform (USIMP) is defined as an operational environment where technologies for intelligent management of urban facilities are made possible through the integration of diverse technologies such as sensors for ground and underground facilities, middleware technology, wired and wireless network, GIS-USN linkage. To make the integration of these diverse technology possible, it is imperative to have a sound reference model for the platform. This paper provides a standardized reference model for USIMP based on the RM-OPD(Reference Model for Open Distributed Processing) standard.

  • PDF

BIM Based Virtual Simulations in CIP(Case in Place Pile) Method for Underground Space Excavation (3차원 정보모델을 활용한 지하공간 굴착 CIP 공법의 가상검토 -서울대학병원 지하 복합진료공간 임대형 민자사업 BIM 설계를 중심으로-)

  • Lee, Hyuk-Jin;Park, Kun-Young;Kim, Hyo-Jin;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.517-520
    • /
    • 2010
  • BIM 설계시 의무사항으로 포함되어 있는 원지형과 암층별 지층, 흙막이 공법 중 CIP(Cast in Place Pile)공법, 구조물 형상을 3차원 정보 모델로 생성하고, 모델을 통해 정확한 2D 도면의 생성, 각 공정간의 간섭검토, 암층별 토공량 및 흙막이의 수량을 산출하였다. 최종 설계안을 도출하기 위해 3차원 기법이 설계 초기에 도입되어 반복적인 노력과 시간을 최소화하여 많은 설계대안을 제시하도록 하였으며, 정확한 설계결과를 얻기 위해, 2D 설계와 3D 설계를 병행 수행함과 동시에 이 과정과 결과를 비교하여 3차원 모델의 효과를 검증하였다.

  • PDF