• Title/Summary/Keyword: 지폐영상

Search Result 17, Processing Time 0.025 seconds

Russian banknotes image extract serial number (러시아 지폐 이미지에서 일련번호 추출)

  • Kim, Su-Youn;Ha, Jin-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.411-413
    • /
    • 2011
  • 최근 확산되고 있는 금융 자동화 업무에서 지폐 분류기, 지폐 정사기, 지폐 인식기, 현금자동입출금기 등이 자주 사용됨에 따라 많은 양의 현금 거래가 무인시스템을 통하여 이루어지고 있다. 특히 지폐 인식기는 지폐의 영상을 획득하여 높은 신뢰도의 영상 처리 기법으로 지폐를 식별하여 분류하는 시스템이다. 지폐를 인식하고, 지폐를 비교하는 작업을 하기 위해서는 가장 기본적인 일련번호를 추출해야 한다. 본 논문에서는 러시아 지폐 이미지를 똑바른 방향으로 뒤집고, 기울어진 각도를 기존의 방법과 다른 방법으로 회전하고, 여러 가지 종류의 지폐를 알아낸 다음 두 개의 일련번호를 추출한다.

System Implementation of Paper Currency Discrimination by Using Integrated Image Features (통합 영상 특징에 의한 지폐 분류 시스템의 구현)

  • Gang, Hyeon-In;Choe, Tae-Wan
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.471-480
    • /
    • 2002
  • In this paper, we implemented a real-time system improving the performance of the paper currency discrimination by integrating a weighted region of interest matching algorithm with a weighted shape feature matching algorithm of the blocked image. The system classifies the paper currency by comparing a query image with compared images based on the database that contain images of paper currency. Especially, the system has good efficiency at the contaminated, rotated, and translated paper currency. The system hardware consists of three parts as follows : the paper currency image acquired by CIS(contact image sensor) is applied to the pre-processing part with A/D converter and PLD. Finally the pre-processed image data are classified by the main image processing part with a high-speed DSP based on the proposed algorithm.

Feature Extraction of Single Images by Using Independent Component Analysis Based on Neuarl Networks (신경망 기반 독립성분분석에 의한 단일영상들의 특징추출)

  • 조용현;민성재;김아람;오정은
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.370-373
    • /
    • 2002
  • 본 논문에서는 단일영상들에 포함된 특징들을 효과적으로 추출하기 위하여 신경망 기반 독립성분분석기법의 이용을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 ?ㄱ습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 512x412 픽셀의 L둠 영상과 480x225 픽셀의 지폐영상 각각에서 선택된 1,000개의 영상패치들을 대상으로 시뮬레이션 한 결과, 추출된 16x16 펙셀의 160개 독립성분 기저벡터는 지문영상과 지폐영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

Algorithm for Detecting Counterfeit Money based on Feature Analysis (특징 분석을 통한 위변조지폐 판별 알고리즘)

  • Ji, Sang-Keun;Lee, Hae-Yeoun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.344-347
    • /
    • 2012
  • 디지털 고성능 영상장비의 대중화와 강력한 이미지 편집 소프트웨어의 출현으로 인해 고화질의 위 변조지폐를 누구나 쉽게 제조 가능하게 되었다. 그러나 일반인의 위 변조지폐 발견비율은 낮은 수준이다. 본 논문에서는 범용 스캐너를 이용하여 위 변조지폐를 판별할 수 있는 시스템을 제안한다. 본 시스템에서는 위 변조지폐를 출력하는 과정에서 나타나는 인쇄물의 고유한 특징에 기반하여 위 변조 여부를 판별한다. 비지역적 평균 알고리즘을 이용하여 노이즈 특성을 추출하고, 명암도 작용길이 행렬을 계산하여 지폐의 특성을 추출하였다. 제안한 알고리즘의 성능을 분석하기 위해 총 324장의 1만원권 지폐와 위조지폐 이미지로 실험하였으며, 그 결과 제안한 알고리즘이 위 변조 판별에 있어서 92% 이상을 보임을 확인하였다.

Automatic Extraction of UV patterns for Paper Money Inspection (지폐검사를 위한 UV 패턴의 자동추출)

  • Lee, Geon-Ho;Park, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.365-371
    • /
    • 2011
  • Most recently issued paper money includes security patterns that can be only identified by ultra violet (UV) illuminations. We propose an automatic extraction method of UV patterns for paper money inspection systems. The image acquired by camera and UV illumination is transformed to input data through preprocessing. And then, the Gaussian mixture model (GMM) and split-and-merge expectation maximization (SMEM) algorithm are applied to segment the image represented by input data. In order to extract the UV pattern from the segmented image, we develop a criterion using the area of covariance vector and the weight value. The experimental results on various paper money are presented to verify the usefulness of the proposed method.

A Study on Hierarchical Recognition Algorithm of Multinational Banknotes Using SIFT Features (SIFT특징치를 이용한 다국적 지폐의 계층적 인식 알고리즘에 관한 연구)

  • Lee, Wang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.685-692
    • /
    • 2016
  • In this paper, we not only take advantage of the SIFT features in banknote recognition, which has robustness to illumination changes, geometric rotation as well as scale changes, but also propose the hierarchical banknote recognition algorithm, which comprised of feature vector extraction from the frame grabbed image of the banknotes, and matching to the prepared data base of multinational banknotes by ANN algorithm. The images of banknote under the developed UV, IR and white illumination are used so as to extract the SIFT features peculiar to each banknotes. These SIFT features are used in recognition of the nationality as well as face value. We confirmed successful function of the proposed algorithm by applying the proposed algorithm to the banknotes of Korean and USD as well as EURO.

Currency Recognition System for Blind People (시각장애인을 위한 화폐 인식 시스템)

  • Dong-Jun Yoo;Sung-Jun Kim;Jun-Yeong Lee;Hyeon-Su Kang;Jun-Ho Son;Se-Jin Oh
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.257-258
    • /
    • 2024
  • 현재 시각장애인들이 현금을 사용하게 될 시 지폐가 얼마인지 확인할 방법이 없어 불편을 겪거나 금전적 사기를 당할 위험이 잦다. 한국은행에서는 이러한 사고를 막기 위해 점자 지폐를 만들어 발부하고 있지만 시각장애인 91%가 식별하지 못해 많은 불편을 겪고 있다. 본 논문에서는 딥러닝을 활용하여 화폐를 인식하고 TTS 기술을 사용하여 지폐의 값이 얼마인지 소리로 알려주는 시스템을 개발하였다. 지폐 인식을 위해 데이터를 직접 수집하여 YOLOv5 알고리즘을 활용하여 학습시킨 Weights 파일을 사용하였다. 이를 활용하여 시각장애인들은 더 안전하게 현금을 사용하고, 금전적인 문제를 예방할 수 있다.

  • PDF

Counterfeit Money Detection Algorithm based on Morphological Features of Color Printed Images and Supervised Learning Model Classifier (컬러 프린터 영상의 모폴로지 특징과 지도 학습 모델 분류기를 활용한 위변조 지폐 판별 알고리즘)

  • Woo, Qui-Hee;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.12
    • /
    • pp.889-898
    • /
    • 2013
  • Due to the popularization of high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy to make high-quality counterfeit money. However, the probability of detecting counterfeit money to the general public is extremely low and the detection device is expensive. In this paper, a counterfeit money detection algorithm using a general purpose scanner and computer system is proposed. First, the printing features of color printers are calculated using morphological operations and gray-level co-occurrence matrix. Then, these features are used to train a support vector machine classifier. This trained classifier is applied for identifying either original or counterfeit money. In the experiment, we measured the detection rate between the original and counterfeit money. Also, the printing source was identified. The proposed algorithm was compared with the algorithm using wiener filter to identify color printing source. The accuracy for identifying counterfeit money was 91.92%. The accuracy for identifying the printing source was over 94.5%. The results support that the proposed algorithm performs better than previous researches.

Counterfeit Money Detection Algorithm using Non-Local Mean Value and Support Vector Machine Classifier (비지역적 특징값과 서포트 벡터 머신 분류기를 이용한 위변조 지폐 판별 알고리즘)

  • Ji, Sang-Keun;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 2013
  • Due to the popularization of digital high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy for anyone to make a high-quality counterfeit money. However, the probability of detecting a counterfeit money to the general public is extremely low. In this paper, we propose a counterfeit money detection algorithm using a general purpose scanner. This algorithm determines counterfeit money based on the different features in the printing process. After the non-local mean value is used to analyze the noises from each money, we extract statistical features from these noises by calculating a gray level co-occurrence matrix. Then, these features are applied to train and test the support vector machine classifier for identifying either original or counterfeit money. In the experiment, we use total 324 images of original money and counterfeit money. Also, we compare with noise features from previous researches using wiener filter and discrete wavelet transform. The accuracy of the algorithm for identifying counterfeit money was over 94%. Also, the accuracy for identifying the printing source was over 93%. The presented algorithm performs better than previous researches.

Voice Assistant for Visually Impaired People (시각장애인을 위한 음성 도우미 장치)

  • Chae, Jun-Gy;Jang, Ji-Woo;Kim, Dong-Wan;Jung, Su-Jin;Lee, Ik Hyun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.4
    • /
    • pp.131-136
    • /
    • 2019
  • People with compromised visual ability suffer from many inconveniences in daily life, such as distinguishing colors, identifying currency notes and realizing the atmospheric temperature. Therefore, to assist the visually impaired people, we propose a system by utilizing optical and infrared cameras. In the proposed system, an optical camera is used to collect features related to colors and currency notes while an infrared camera is utilized to get temperature information. The user is enabled to select the desired service by pushing the button and the appreciate voice information are provided through the speaker. The device can distinguish 16 kinds of colors, four different currency notes, and temperature information in four steps and the current accuracy is around 90%. It can be improved further through block-wise input image, machine learning, and a higher version of the infrared camera. In addition, it will be attached to the stick for easy carrying and to use it more conveniently.