• Title/Summary/Keyword: 지질경계

Search Result 388, Processing Time 0.03 seconds

Cross-Sectional Item Response Analysis of Geocognition Assessment for the Development of Plate Tectonics Learning Progressions: Rasch Model (판구조론의 학습발달과정 개발을 위한 지구적 인지과정 평가의 횡단적 문항 반응 분석: Rasch 모델)

  • Maeng, Seungho;Lee, Kiyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.1
    • /
    • pp.37-52
    • /
    • 2015
  • In this study, assessment items to examine geocognition on plate tectonics were developed and applied to middle and high school students and college students. Conceptual constructs on plate tectonics are Earth interior structure, specific geomorphology, and geologic phenomena at each plate boundary. Construct for geocognition included temporal reasoning, spatial reasoning, retrospective reasoning, and system thinking. Pictorial data in each item were all obtained from GeoMapApp. Students' responses to the items were analyzed and measured cross-sectionally by Rasch model, which distinguishes persons' ability levels based on their scores for all items and compared them with item difficulty. By Rasch model analysis, Wright maps for middle and high school students and college students were obtained and compared with each other. Differential Item Functioning analysis was also implemented to compare students' item responses across school grades. The results showed: 1) Geocognition on plate tectonics was an assessable construct for middle and high school students in current science curriculum, 2) The most distinguished geocognition factor was spatial reasoning based on cross sectional analysis across school grades, 3) Geocognition on plate tectonics could be developed towards more sophisticated level through scaffolding of relevant instruction and earth science content knowledge, and 4) Geocognition was not a general reasoning separated from a task content but a content-specific reasoning related to the content of an assessment item. We proposed several suggestions for learning progressions for plate tectonics and national curriculum development based on the results of the study.

GENERAL STRATIGRAPHY OF KOREA (한반도층서개요(韓半島層序槪要))

  • Chang, Ki Hong
    • Economic and Environmental Geology
    • /
    • v.8 no.2
    • /
    • pp.73-87
    • /
    • 1975
  • Regional unconformities have been used as boundaries of major stratigraphic units in Korea. The term "synthem" has already been propsed for formal unconformity-bounded stratigraphic units of maximum magnitude (ISSC, 1974). The unconformity-based classification of the strata in the cratonic area in Korea comprises in ascending order the Kyerim, $Sangw{\check{o}}n$, $Jos{\check{o}}n$, $Py{\check{o}}ngan$, Daedong, and $Ky{\check{o}}ngsang$ Synthems, and the Cenozoic Erathem. The unconformites separating them from each other are either orogenic or epeirogenic (and vertical tectonic). The sub-$Sangw{\check{o}}n$ unconformity is a non-conformity above the basement complex in Korea. The unconformities between the $Sangw{\check{o}}n$, $Jos{\check{o}}n$, and $Py{\check{o}}ngan$ Synthems are disconformities denoting late Precambrian and Paleozoic crustal quiescence in Korea. The unconformities between the $Py{\check{o}}ngan$, Daedong, and $Ky{\check{o}}ngsang$ Synthems are angular unconformities representing Mesozoic orogenies. The bounding unconformities of the $Ky{\check{o}}ngsang$ Synthem involve non-conformable parts overlying the Jurassic and late Cretaceous granitic rocks.

  • PDF

Environmental Geochemistry and Contamination Assessment of the Tohyun Mine Creek, Korea (토현광산 수계의 환경지구화학적 특성과 오염도 평가)

  • 이찬희;이현구;이종창;전서령
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.471-483
    • /
    • 2001
  • The pH values of the mine and surface water from the Tohyun mine creek were higher compared with those of groundwater, and 2nd round samples in same sites were even alkaline. The stream and mine waters belong to the characteristics of (Ca+Mg)-(SO$_4$) and (Ca+Mg)-(HCO$_3$) types, and groundwaters have to the (Ca+Mg+Na+K)-(HCO$_3$+SO$_4$) type. As the 2nd samples. concentrations of mostly anions are increasing compared with the forder samples. However, the mostly cation concentrations are decreasing. The hydrogeochemistry indicate that water quality is different chemical characteristics and evolution trends. The range of $\delta$D and $\delta$$^{18}$ valutes (relative to SMOW) in the waters are shown in -62.2 to -70.1$\textperthousand$, and -8.1 to -9.4$\textperthousand$. The values are plowed parallel to $\delta$D=8$\delta$$^{18}$ O+ (6$\pm$4). The d values of groundwater show 2.4, which is lower than the surface (5.2) and mine (7.6) waters. Strontium concentra titans range from 0.025 to 11.844 mg/$\ell$ in all kinds of water samples, but the groundwater has the highest contents The $^{87}$ Sr/$^{86}$ Sr ratios (0.7115 to 0.7129) show more lightened to the groundwater. The $\delta$$^{18}$ O value, Ca and Sr contents are decreased with $^{87}$ Sr/$^{86}$ Sr increasing, because it is support to the altitude effects of the sampling sites rather than a water-rock interaction of environmental isotope. Using computer code of WATEQ4F, saturation indices of albite, Quartz, gibssite and gypsum are calculated to be soluble. The calcite and dolomite show super saturation state, however, clay mineral species are plotted boundary between undersaturation and supersaturation. In the Tohyun mine creek, reaction materials with ore wastes arid precipitation have influence upon increasing EC and TDS of the waters independent of pH. The SO$_4$ concentrations in the mine water is 181.845 mg/$\ell$. This is abruptly increase in surface water and then detected 249.727 mg/$\ell$ in the groundwater. As a results of the calculated sulfate mineral solubilities, the sulfate ions became saturation states an above 150 mg/$\ell$ concentrations.

  • PDF

Estimation of the Amount of Soil toss and Main Sources of Riverbed Sediments in Each Tributary Basin of the Seomjin River in Sunchang Area, Korea (순창지역 섬진강 지류별 토양유실량 산정과 하상퇴적물의 주공급원에 관한 고찰)

  • Kwak Jae-Ho;Yang Dong-Yoon;Lee Hyun-Koo;Kim Ju-Yong;Lee Seong-Gu
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.607-622
    • /
    • 2005
  • This study was carried out in order to evaluate where the soil loss was mainly occurred, .and to verify how riverbed sediments in the tributaries of the Seomjin River were related to their source rocks distributed in Sunchang area. The study area including the Seomjin River with 4 tributaries of Kyeongcheon, Okgwacheon, Changjeong-cheon and Ipcheon was divided into 10 watershed. The RUSLE (Revised Universal Soil Loss Equation) was estimated for all the grids (10 m cells) in the corresponding watershed. The amount of soil loss per unit area was calculated as follows: dry fold (53,140.94 tons/ha/year), orchard (25,063.38 tons/ha/year), paddy field (6,506.7 tons/ha/year) and Idlest (6,074.36 tons/ha/year). The differences of soil loss per unit area appear to be depends on areas described earlier. Soil erosion hazard zones were generally distributed within dry fields. Several thematic maps such as land use maps, topographical maps and soil maps were used as a data to generate the RUSLE factors. The amount of soil loss, computed by using the RUSLE, showed that soil loss mainly occurred at the regions where possible source rocks were distributed along the stream. Based on the this study on soil loss and soil erosion hazard zone together with chondrite-normalized REE patterns that were previously analyzed in same study area, a closed relationship between riverbed sediments and possible source rocks is formed. Especially in the Okgwacheon that are widely distributed by various rocks, chondrite-normalized REE pattern derived from the riverbed sediments, source rock and soil is expected to have a closed relationship with the distribution of soil loss.

Structural Evolution of the Eastern Margin of Korea: Implications for the Opening of the East Sea (Japan Sea) (한국 동쪽 대륙주변부의 구조적 진화와 동해의 형성)

  • Kim Han-Joon;Jou Hyeong-Tae;Lee Gwang-Hoon;Yoo Hai-Soo;Park Gun-Tae
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.235-253
    • /
    • 2006
  • We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the Korean margin leading to the separation of the Japan Arc. The Korean margin is rimmed by fundamental elements of rift architecture comprizing a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. In the northern part, rifting occurred in the Korea Plateau, a continental fragment extended and partially segmented from the Korean Peninsula, that provided a relatively broader zone of extension resulting in a number of rifts. Two distinguished rift basins (Onnuri and Bandal Basins) in the Korea Plateau we bounded by major synthetic and smaller antithetic faults, creating wide and symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. In contrast, the southern margin is engraved along its length with a single narrow rift basin (Hupo Basin) that is an elongated asymmetric half-graben. Rifting at the Korean margin was primarily controlled by normal faulting resulting from extension in the west and southeast directions orthogonal to the inferred line of breakup along the base of the slope rather than strike-slip deformation. Although rifting involved no significant volcanism, the inception of sea floor spreading documents a pronounced volcanic phase which seems to reflect slab-induced asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin can be explained by the processes occurring at the passive continental margin with magmatism intensified by asthenospheric upwelling in a back-arc setting.

Occurrence Characteristics and Existing Forms of U-Th Containing Minerals in KAERI Underground Research Tunnel(KURT) Granite (한국원자력연구원 지하처분연구시설(KURT) 화강암의 U-Th 함유광물 산출특성 및 존재형태)

  • Cho, Wan Hyoung;Baik, Min Hoon;Park, Tae-Jin
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.117-128
    • /
    • 2017
  • Occurrence characteristics and existing forms of U-Th containing minerals in KURT (KAERI Underground Research Tunnel) granite are investigated to understand long-term behavior of radionuclides in granite considered as a candidate rock for the geological disposal of high-level radioactive waste. KURT granite primarily consists of quartz, feldspar and mica. zircon, REE(Rare Earth Element)-containing monazite and bastnaesite are also identified. Besides, secondary minerals such as sericite, microcline and chlorite including quartz vein and calcite vein are observed. These minerals are presumed to be accompanied by a post-hydrothermal process. U-Th containing minerals are mainly observed at the boundaries of quartz, feldspar and mica, mostly less than $30{\mu}m$ in size. Quantitative analysis results using EPMA (Electron Probe Micro-Analyzer) show that 74.2 ~ 96.5% of the U-Th containing minerals consist of $UO_2$ (3.39 ~ 33.19 wt.%), $ThO_2$ (41.61 ~ 50.24 wt.%) and $SiO_2$ (15.43 ~ 18.60 wt.%). Chemical structure of the minerals calculated using EPMA quantitative analysis shows that the U-Th minerals are silicate minerals determined as thorite and uranothorite. The U-Th containing silicate minerals are formed by a magmatic and hydrothermal process. Therefore, KURT granite formed by a magmatic differentiation is accompanied by an alteration and replacement owing to a hydrothermal process. U-Th containing silicate minerals in KURT granite are estimated to be recrystallized by geochemical factors and parameters such as temperature, pressure and pH owing to the hydrothermal process. By repeated dissolution/precipitation during the recrystallization process, U-Th containing silicate minerals such as thorite and uranothorite are formed according to the variation in the concentrated amount of U and Th.

Study of Crustal Structure in North Korea Using 3D Velocity Tomography (3차원 속도 토모그래피를 이용한 북한지역의 지각구조 연구)

  • So Gu Kim;Jong Woo Shin
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.293-308
    • /
    • 2003
  • New results about the crustal structure down to a depth of 60 km beneath North Korea were obtained using the seismic tomography method. About 1013 P- and S-wave travel times from local earthquakes recorded by the Korean stations and the vicinity were used in the research. All earthquakes were relocated on the basis of an algorithm proposed in this study. Parameterization of the velocity structure is realized with a set of nodes distributed in the study volume according to the ray density. 120 nodes located at four depth levels were used to obtain the resulting P- and S-wave velocity structures. As a result, it is found that P- and S-wave velocity anomalies of the Rangnim Massif at depth of 8 km are high and low, respectively, whereas those of the Pyongnam Basin are low up to 24 km. It indicates that the Rangnim Massif contains Archean-early Lower Proterozoic Massif foldings with many faults and fractures which may be saturated with underground water and/or hot springs. On the other hand, the Pyongyang-Sariwon in the Pyongnam Basin is an intraplatform depression which was filled with sediments for the motion of the Upper Proterozoic, Silurian and Upper Paleozoic, and Lower Mesozoic origin. In particular, the high P- and S-wave velocity anomalies are observed at depth of 8, 16, and 24 km beneath Mt. Backdu, indicating that they may be the shallow conduits of the solidified magma bodies, while the low P-and S-wave velocity anomalies at depth of 38 km must be related with the magma chamber of low velocity bodies with partial melting. We also found the Moho discontinuities beneath the Origin Basin including Sari won to be about 55 km deep, whereas those of Mt. Backdu is found to be about 38 km. The high ratio of P-wave velocity/S-wave velocity at Moho suggests that there must be a partial melting body near the boundary of the crust and mantle. Consequently we may well consider Mt. Backdu as a dormant volcano which is holding the intermediate magma chamber near the Moho discontinuity. This study also brought interesting and important findings that there exist some materials with very high P- and S-wave velocity annomoalies at depth of about 40 km near Mt. Myohyang area at the edge of the Rangnim Massif shield.

Tephrostratigraphy and Paleoenvironments of Marine Core in the Kita-Yamato Trough, East Sea/Japan Sea (동해 키타-야마토 해곡에서 채취된 시추코아의 테프라층서와 고환경)

  • Chun Jong-Hwa;Cheong Daekyo;Han Sang-Joon;Huh Sik;Yoo Hai-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.83-93
    • /
    • 2006
  • The Kita-Yamato Trough is characterized by a SW-NE trending narrow graben between the Yamato Bank and the Kita-Yamato Bank in the central East Sea/Japan Sea (ES/JS). Core 20EEZ-1 was obtained in the flat summit of a small ridge from the southwest Kita-Yamato Trough. The sedimentation was mainly controlled by the supply of hemipelgic sediments and substantial tephras from explosive volcanic eruptions of the Quaternary volcanoes. The aim of this study is to reconstruct the tephrostratigraphy from the marine sediments collected from the Kita-Yamato Trough and to provide the atmosphere and ocean conditions during the explosive volcanic eruptions. According to the detailed tephrostratigraphy and lithofacies records, the core sediments were deposited during the last marine isotope stage (MIS) 7. The core consists of four lithofacies, idetified as, oxidized mud (OM), crudely laminated mud (CLM) and bioturbated mud (BM), interbedded with coarse-grained tephra (TP). The major element geochemistry and stratigraphic positions of seven tephra layers suggest that they originated from the Aira caldera in Kyushu area among the Japanese islands (AT tephra; 29.24 ka), unknown submarine volcano in the south Korea Plateau (SKP-I; MIS 3, SKP-II; MIS 4, SKP-IV; boundary between MIS 6 and MIS 5e, SKP-V; MIS 6, respectively), and the Baegdusan volcano in the Korean Peninsula (B-KY1; ca. 130 ka, B-KY2; ca. 196 ka). The absence of tephras originated trom Ulleung Island in core 20EEZ-l suggest that the tephras had not been transported into the Kita-Yamato Trough by atmosphere conditions during the eruptions. On the other hand, the B-KYI and the B-KY2 tephras derived from the Baegdusan volcano were founded in the Kita-Yamato Trough by a presence of prevailing westerly winds during the eruptions. Furthermore, the SKP tephras were characterized by the transport across the air-water interface, causing quickly thrust of raising eruption plumes from subaqueous explosive eruptions. Surface currents may play an important role in controlling the distribution patterns of the SKP tephras to distal areas. The tephrostratigraphic study in the Kita-Yamato Trough provides the important chronostratigraphic marker horizons and the detailed atmosphere and ocean conditions during the explosive eruptions.

Hidden Porphyry-Related Ore Potential of the Geumseong Mo Deposit and Its Genetic Environment (금성 몰리브데늄광상의 잠두 반암형 광체에 대한 부존가능성과 성인적 환경)

  • Choi, Seon-Gyu;Park, Jung-Woo;Seo, Ji-Eun;Kim, Chang-Seong;Shin, Jong-Ki;Kim, Nam-Hyuck;Yoo, In-Kol;Lee, Ji-Yun;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.1-14
    • /
    • 2007
  • The Guemseong mine is located near the southern margin of the Jurassic Jecheon granitoids collectively with the Cambro-Ordovician mixed dolostone-limestone series of the Yeongweol Group, Choseon Supergroup. Here, two spatially distinct types of skarn formation have been observed. The upper transitional skarn is the calcic Mo skarn which has the mineral assemblage of $garnet+hedenbergite+epidote{\pm}wollastonite{\pm}magnetite{\pm}hematite{\pm}amphibole{\pm}chlorite{\pm}vesuvianite$ within the calcite marble. On the other hand, the lower proximal skarn occurs as a discordant magnesian Fe skarn at the contact of Mo-bearing aplitic cupolas with unidirectional solidification texture(UST) within the dolomitic marble. The magnesian Fe skarn has the mineral assemlage $olivine+diopside+magnetite+tremolite+serpentine+talc+chlorite{\pm}phlogopite$. The formation of two different types of skarn and ore mineralization in Geumseong mine have been attributed to multistage and complex metasomatic replacements that ultimately resulted in silicate-oxide-sulfide sequence of metasomatism. An early prograde stage with anhydrous skarn minerals such as olivine, clinopyroxene and/or garnet with magnetite, formed from high temperature (about $500^{\circ}\;to\;400^{\circ}C$) at an environmental condition of low $CO_2$ fugacity ($XCO_2<0.1$) and 0.5 kbar. The later retrograde stage with hydrous silicates such as amphibole, serpentine, phlogopite, epidote and chlorite with molybdenite or hematite, termed from relatively lower temperature (about $400^{\circ}\;to\;300^{\circ}C$).

Geochemical and Nd-Sr Isotope Studies for Foliated Granitoids and Mylonitized Gneisses from the Myeongho Area in Northeast Yecheon Shear Zone (예천전단대 북동부 명호지역 엽리상 화강암류와 압쇄 편마암류에 대한 지구화학 및 Nd-Sr 동위원소 연구)

  • Kim, Sung-Won;Lee, Chang-Yun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.299-314
    • /
    • 2008
  • The NE-trending Honam shear zone is a broad, dextral strike-slip fault zone between the southern margin of the Okcheon Belt and the Precambrian Yeongnam Massif in South Korea and is parallel to the trend of Sinian deformation that is conspicuous in Far East Asia. In this paper, we report geochemical and isotopic(Sr and Nd) data of mylonitic quartz-muscovite Precambrian gneisses and surrounding foliated hornblende-biotite granitoids near the Myeongho area in the Yecheon Shear Zone, a representative segment of the Honam Shear Zone. Foliated hornblende-biotite granitoids commonly plot in the granodiorite field($SiO_2=61.9-67.1\;wt%$ and $Na_2O+K_2O=5.21-6.99\;wt%$) on $SiO_2$ vs. $Na_2O+K_2O$ discrimination diagram, whereas quartz-muscovite Precambrian orthogneisses plot in the granite field. The foliated hornblende-biotite granitoids are mostly calcic and calc-alkalic and are dominantly magnesian in a modified alkali-lime index(MALI) and Fe# [$=FeO_{total}(FeO_{total}+MgO)$] versus $SiO_2$ diagrams, which correspond with geochemical characteristics of Cordilleran Mesozoic batholiths. The foliated hornblende-biotite granitoids have molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 0.89 to 1.10 and are metaluminous to weakly peraluminous, indicating I type. In contrast, Paleoproterozoic orthogneisses have peraluminous compositions, with molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 1.11 to 1.22. On trace element spider diagrams normalized to the primitive mantle, the large ion lithophile element(LILE) enrichments(Rb, Ba, Th and U) and negative Ta-Nb-P-Ti anomalies of foliated hornblende-biotite granitoids and mylonitized quartz-muscovite gneisses in the Yecheon Shear Zone are features common to subduction-related granitoids and are also found in granitoids from a crustal source derived from the arc crust of active continental margin. ${\varepsilon}_{Nd}(T)$ and initial Sr-ratio ratios of foliated hornblende-biotite granitoids with suggest the involvement of upper crust-derived melts in granitoid petrogenesis. Foliated hornblende-biotite granitoids in the study area, together with the Yeongju Batholith, show not changing contents of specific elements(Ti, P, Zr, V and Y) from shear zone to the area near the shear zone. These results suggest that no volume changes and geochemical alterations in fluid-rich foliated hornblende-biotite granitoids may occur during deformation, which mass transfer by fluid flow into the shear zone is equal to the mass transfer out of the shear zone.