• Title/Summary/Keyword: 지진 이벤트 분류

검색결과 4건 처리시간 0.024초

그래프 합성곱 신경망을 이용한 다중 관측소 기반 지진 이벤트 분류 (Multi-site based earthquake event classification using graph convolution networks)

  • 김관태;구본화;고한석
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.615-621
    • /
    • 2020
  • 본 논문은 다중 관측소에서 측정된 지진 신호를 이용한 그래프 합성곱 신경망 기반 지진 이벤트 분류 방법을 제안한다. 기존의 딥러닝 기반 지진 이벤트 분류 방법은 대부분 단일 관측소에서 측정된 신호로부터 지진 이벤트를 분류한다. 지진 관측망에는 수많은 지진 관측소가 존재하며 하나의 관측소만 사용하는 방법보다 여러 관측소의 정보를 동시에 활용하는 방법이 지진 이벤트 분류 성능 향상을 이끌 수 있다. 본 논문에서는 단일 관측소에서 측정된 지진 신호들에 합성곱 신경망을 적용해 임베딩 특징을 추출한 후 그래프 합성곱 신경망을 이용해 단일 관측소들 사이의 정보를 융합하는 다중 관측소 기반 지진 이벤트 분류 구조를 제안한다. 관측소의 개수 변화 등 다양한 실험을 통해 제안한 모델의 성능 검증을 수행하였으며 실험 결과 제안하는 모델이 단일 관측소 기반 분류 모델보다 약 10 % 이상의 정확도와 이벤트 재현율 성능 향상을 보여주었다.

합성곱 순환 신경망 구조를 이용한 지진 이벤트 분류 기법 (Earthquake events classification using convolutional recurrent neural network)

  • 구본화;김관태;장수;고한석
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.592-599
    • /
    • 2020
  • 본 논문은 다양한 지진 이벤트 분류를 위해 지진 데이터의 정적인 특성과 동적인 특성을 동시에 반영할 수 있는 합성곱 순환 신경망(Convolutional Recurrent Neural Net, CRNN) 구조를 제안한다. 중규모 지진뿐만 아니라 미소 지진, 인공 지진을 포함한 지진 이벤트 분류 문제를 해결하려면 효과적인 특징 추출 및 분류 방법이 필요하다. 본 논문에서는 먼저 주의 기반 합성곱 레이어를 통해 지진 데이터의 정적 특성을 추출 하게 된다. 추출된 특징은 다중 입력 단일 출력 장단기메모리(Long Short-Term Memory, LSTM) 네트워크 구조에 순차적으로 입력되어 다양한 지진 이벤트 분류를 위한 동적 특성을 추출하게 되며 완전 연결 레이어와 소프트맥스 함수를 통해 지진 이벤트 분류를 수행한다. 국내외 지진을 이용한 모의 실험 결과 제안된 모델은 다양한 지진 이벤트 분류에 효과적인 모습을 보여 주었다.

지진 이벤트 분류를 위한 정규화 기법 분석 (Analysis of normalization effect for earthquake events classification)

  • 장수;구본화;고한석
    • 한국음향학회지
    • /
    • 제40권2호
    • /
    • pp.130-138
    • /
    • 2021
  • 본 논문에서는 지진 이벤트 분류를 위한 다양한 정규화 기법 분석 및 효과적인 합성곱 신경망(Convolutional Neural Network, CNN)기반의 네트워크 구조를 제안하였다. 정규화 기법은 신경망의 학습 속도를 개선할 뿐만 아니라 잡음에 강인한 모습을 보여 준다. 본 논문에서는 지진 이벤트 분류를 위한 딥러닝 모델에서 입력 정규화 및 은닉 레이어 정규화가 모델에 미치는 영향을 분석하였다. 또한, 적용 은닉 레이어의 구조에 따른 다양한 실험을 통해 효과적인 모델을 도출하였다. 다양한 모의실험 결과 입력 데이터 정규화 및 제1 은닉 레이어에 가중치 정규화를 적용한 모델이 가장 안정적인 성능 향상을 보여 주었다.

다중 주파수 대역 convolutional neural network 기반 지진 신호 검출 기법 (Earthquake detection based on convolutional neural network using multi-band frequency signals)

  • 김승일;김동현;신현학;구본화;고한석
    • 한국음향학회지
    • /
    • 제38권1호
    • /
    • pp.23-29
    • /
    • 2019
  • 본 논문에서는 국내에서 발생한 지진 신호를 검출 및 식별하기 위한 방법을 다루었다. 국내에서 발생한 지진 신호들을 분석해 본 결과 서로 다른 주파수 대역 신호의 특징들이 각각 분류를 위한 특징으로 적절함을 확인할 수 있었다. 이러한 분석 결과를 바탕으로 지진 신호에서 추출한 다중 주파수 대역 특징을 기반으로 하는 CNN(Convolutional Neural Network) 기법에 대해서 제안하였다. 제안하는 다중 주파수 대역 CNN 기법은 지진 신호에서 추출한 멜 스펙트럼에 대해서 각각 필터를 적용하여 서로 다른 주파수 대역(저/중/고 주파수)의 신호를 추출하였다. 추출된 신호들을 바탕으로 각각 CNN 기반 분류를 수행하였고, 수행된 결과를 융합하여 최종적으로 지진 이벤트에 대해 식별하였다. 2018년 동안 대한민국에서 발생한 실제 지진데이터를 기반으로 하는 실험을 통해 제안하는 기법에 대한 효용성을 검증하였다.