• Title/Summary/Keyword: 지진 거동

Search Result 1,100, Processing Time 0.025 seconds

Performance Evaluation of Inelastic Rotation Capacity of Reinforced Concrete Beam-Column Connections (철근콘크리트 보-기둥 접합부의 비탄성 회전 능력에 대한 성능 평가)

  • Lee, Ki-Hak;Woo, Sung-Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column connections of reinforced concrete moment frames. A total of 91 test specimens for beam-column joint connections were examined in detail, and 28 specimens were classified as special moment frame connections based on the design and detailing requirements in the ACI 318-02 Provisions. Then the acceptance criteria, originally defined for steel moment frame connections in the AISC-02 Seismic Provisions, were used to evaluate the joint connections of concrete moment frames. Twenty-seven out of 28 test specimens that satisfy the design requirements for special moment frame structures provide sufficient strength and are ductile up to a plastic rotation of 0.03 rad. without any major degradation in strength. Joint shear stress, column-to-beam flexural strength ratio, and transverse reinforcement ratio in a joint all play a key role in good performance of the connections.

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

A Study on Seismic Performance of High-Strength Steel(POSTEN60, POSTEN80) Pipe-Section Piers using 3-Dimensional Elastic-Plastic Finite Deformation Analysis (3차원 탄소성 유한변위해석을 이용한 고강도(POSTEN60, POSTEN80) 원형강교각의 내진성능에 관한 연구)

  • Chang, Kyong-Ho;Jang, Gab-Chul;Kang, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.45-54
    • /
    • 2004
  • Recently, as steel structures become higher and more long-spanned, application of high-strength steels is increasing gradually. For seismic design of steel structures using high-strength steels(POSTEN60, POSTEN80), analytical method, can describe the large deformation and inelastic cyclic behavior generated by non-proportional cyclic loading, are required. In this paper, cyclic plasticity model was proposed by results of monotonic loading tests ant cyclic loading tests. Three-dimensional finite element analysis is developed by using proposed model and finite deformation theory and verified as compare with experiment result. Using 3-dimensional elastic-plastic finite deformation analysis, seismic analysis of high-strength steel pipe-section piers are carried out. Also, seismic performance of high-strength steel pipe-section piers in parameter of diameter-thickness ratio was clarified.

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

Seismic Performance Evaluation of Steel Moment Frames in Korea Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 국내 철골 모멘트골조의 내진성능 평가)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • Domestic steel moment resisting frames were designed in accordance with the former KBC2005 and the current KBC2009, and then their seismic performance was evaluated in accordance with FEMA355F by utilizing nonlinear dynamic analysis. The results from the procedure in FEMA355F were different with those from the capacity spectrum method utilizing nonlinear static push-over analysis. In particular, the domestic steel moment resisting frames have a weak panel zone, so their behavior can be estimated more precisely by nonlinear dynamic analysis. The domestic steel moment resisting frames satisfied the performance goal if located at a site class $S_B$ or $S_C$, regardless of the story number and the response modification factor. However, if they are located at a site class $S_D$ or $S_E$, performance goal satisfaction cannot be guaranteed. No matter what standard is used for the design, KBC2005 or KBC2009, the domestic steel moment resisting frames may possess satisfactory seismic performance if the site condition is relatively good.

Nonlinear Finite Element Analysis of Circular Hollow Reinforced Concrete Columns Based on Design Variables (설계변수에 따른 중공원형 철근콘크리트 교각의 비선형 유한요소해석)

  • Cheon, Ju-Hyun;Lee, Seung-Jin;Lee, Byung-Ju;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.35-42
    • /
    • 2011
  • The seismic design of solid reinforced concrete bridge columns has been committed to, based on accumulated research and design specifications. The rational confinement model and seismic performance evaluation, however, are insufficient because of the lack of domestic and foreign design specifications about the experimental and analytical difficulties in the case of circular hollow reinforced concrete columns. In this paper, the seismic behavior of circular hollow reinforced concrete columns and its dependence on design variables are understood and explained. These research results can be used to derive the rational and economical design specifications for circular hollow sectional columns based on the result from the nonlinear analysis program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology).

Seismic Design of Low-rise Steel Moment Frames in Korea (국내 저층 철골 모멘트골조의 내진설계)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The connection type of steel moment frames in the country is mostly fabricated in factories so that it is fairly ductile due to good quality control. Based on references, the domestic connection satisfies the performance limit for steel intermediate moment frames specified by the AISC. However, the current KBC2009 building code specifies various systems for steel moment frames such as ordinary, intermediate, and special moment frames while the former KBC2005 only did so for a ductile moment frame. This induces the necessity of investigating which system is appropriate in the country when the domestic connection is applied. Therefore, this study was aimed at finding a proper design method by comparing the ductile moment frame in KBC2005 and the intermediate moment frames in KBC2009. The results showed that seismic design parameters for the ductile moment frames can be reasonable for satisfying the performance objective.

Evaluation of Vibration Characteristics of Operating Rotational Machines Depending of Types of Foundation (기초형식에 따른 회전기기의 가동중 진동특성 분석)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.63-72
    • /
    • 2007
  • The Emergency Diesel Generator (EDG) is a very important equipment for the safety of a Nuclear Power Plant (NPP). In this study, the operating vibration of three kinds of EDG systems was measured. The target EDG systems are Yonggwang 5 unit and Ulchin 2 and 3 units. The Yonggwang 5 and Ulchin 3 unit EDG systems are the same type but the foundation systems are different. One is an anchor bolt type and the other is a spring and viscous-damper type. The purpose of these measurements is for a verification of the vibration isolation effect depending on the foundation system. As a result, It can be said that the spring and viscous damper system of the EDG performed better for the vibration isolation than that of anchor bolt type.

A Time Domain Analysis of Moored Ship Motions Considering Tsunami Resonant Effects (쓰나미의 공진현상을 고려한 항내계류선박의 시계열 해석)

  • Cho Ik-Soon;Kong Gil-Young;Lee Yun-Sok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.191-197
    • /
    • 2006
  • Recently, the earth scale disaster is occurring frequently. Under the effects of global warming, the weather has become unseasonable worldwide. Hence, the earth is experiencing unstable condition with many disasters such as storms and flood damages as well as earthquake. Therefore, it is necessary to consider what we can do to prevent disasters. A disaster like earthquake will inevitably occur in view of the probabilities. The active period of earthquakes and the inactive periods repeat alternatively. Consequently, recent warnings indicate that there is a potential risk of massive earthquakes. Consideration of the effects of tsunami to the moored ship is very important. Operational problems such as moored ship motions sometimes become remarkable with large amplitude and long periods in harbor. Moored ship motions may cause the breakage of mooring systems such as mooring lines, fenders or quay. Large and long period moored ship motions are caused by resonant effects. In this paper, the moored ship motions within a harbor by the large-scale tsunami and the effects on the motions and mooring loads with resonant effects are investigated by numerical simulations.

  • PDF

Cyclic Seismic Testing of Steel Moment Connections Reinforced with Welded Straight Haunch (용접 수평헌치로 보강된 철골 모멘트 접합부의 반복재하 내진실험)

  • 이철호;권근배;정종현;오명호;구은숙
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.31-37
    • /
    • 2002
  • Recently a simplified design procedure as well as load transfer model for seismic steel moment connections with welded straight haunch have been proposed by Lee and Uang. Cyclic seismic testing was conducted to verify the proposed design procedure and to develop the details that will prevent the cracking at the haunch tip, where stress concentration was the highest. All the specimens thus designed effectively pushed plastic hinging away from the haunch tip and were able to develop satisfactory plastic rotation capacity of 0.04 radian with no fracture. A sloped edge combined with drilling a hole near the haunch tip or a pair of stiffeners(partially or fully) extended from the beam web successfully prevented the crack initiation at the haunch tip. The strut action of the haunch web, which had been predicted from the previous analytical study, was also experimentally identified through the strain gage readings.