• Title/Summary/Keyword: 지진해일 파력

Search Result 17, Processing Time 0.02 seconds

Laboratory Experiments for Solitary Wave Force on Vertical Structures (연직구조물에 작용하는 고립파 파력 특성에 관한 실험)

  • Han, Sejong;Seo, Gyu-Hak;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1067-1076
    • /
    • 2014
  • In this study, a series of hydraulic experiments are conducted to measure wave pressure on vertical structures with incident solitary waves that well represent characteristics of tsunamis. The pressure transducers measure time histories of wave pressure according to wave height to see pressure distribution. The force of incident solitary wave is estimated from integrated pressure distributions and represented with square and cylindrical columns. Experimental measurements are compared with the predictions of existing empirical formulas frequently used to design of coastal structures.

Evaluation of the Stability of Quay Wall under the Earthquake and Tsunami (지진 및 지진해일파 작용하의 해안안벽의 안정성평가)

  • Lee, Kwang-Ho;Ha, Sun-Wook;Lee, Kui-Seop;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.41-54
    • /
    • 2011
  • The present study analyzes the stability of waterfront quay wall under the combined action of earthquake and tsunami. Adopting the limit equilibrium method, the stability of waterfront quay wall is checked for both the sliding and overturning. Forces due to tsunami are compared with the proposed formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D). Variations of the stability of wall are also proposed by the parametric study including tsunami water height, horizontal seismic acceleration coefficient, internal friction angle of soil, friction angle between the wall and the soil and the pore water pressure ratio. The present study about the stability of wall is also compared with the case when earthquake and tsunami are not considered. As a result, the result of numerical analysis about the tsunami force is similar to that of proposed formula. When earthquake and tsunami are simultaneously considered, the stability of wall in passive case significantly decreases and tsunami forces in active case are affected as a resistance force on the wall and so the stability of wall increases.

Numerical Simulation of Tsunami Force Acting on Onshore Bridge (for Tsunami Bore) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(단파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.46-61
    • /
    • 2017
  • In the present work, the interaction analysis between tsunami bore and onshore bridge is approached by a numerical method, where the tsunami bore is generated by difference of upstream side and downstream side water levels. Numerical simulation in this paper was carried out by TWOPM-3D(three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. In order to verify the applicability of force acting on an onshore bridge, numerical results and experimental results were compared and analyzed. From this, we discussed the characteristics of horizontal force and vertical force(uplift force and downward force) changes including water level and velocity change due to the tsunami bore strength, water depth, onshore bridge form and number of girder. Furthermore, It was revealed that the entrained air in the fluid flow highly affected the vertical force.

A Study on Behavior of Offshore Structures under Wave Variation (파랑변화에 따른 해양구조물의 거동특성에 관한 연구)

  • Moon, Hyun-Gi;Kyung, Kab-Soo;Park, Jin-Eun;Jun, Ssang-Sun;Kim, Jin-Gon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.183-186
    • /
    • 2011
  • 해양구조물은 다양한 외력으로부터 지속적인 영향을 받으며 특히, 파력은 구조물의 설계에 결정적인 인자로 간주된다. 해양구조물 파장과 구조물의 크기와의 상대적인 관계로부터 크게 소형구조물, 대형구조물, 대상구조물로 대별될 수 있다. 전통적으로 소형구조물은 회절파의 발생이 없는 것으로 가정하여 Morison식으로부터 파력을 산정하고, 대형구조물은 회절파의 작용에 따른 관성력만을 고려하며, 대상구조물은 단면 2차원적인 파압만을 고려하여 Goda파압공식류로부터 작용파압을 추정하고 있다. 이러한 평가는 단주기파랑의 작용에 근거를 두고 있고, 또 대형 및 대상구조물의 경우에는 유체의 점성력을 고려하고 있지 않으며, 특히 지진해일파의 작용에 대한 평가는 전혀 이루어지지 않는 것이 현재의 상태이다. 본 연구는 대형구조물인 슬리트케이슨과 소형 구조물인 자켓구조물을 대상구조물로 선정하여 구조해석을 토대로 파랑의 변화에 따른 구조물의 거동특성을 연구하였다.

  • PDF

Numerical Simulation for Tsunami Force Acting on Onshore Bridge (for Solitary Wave) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(고립파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.92-108
    • /
    • 2017
  • Present work shows a numerical method to analysis of interaction analysis between solitary wave and onshore bridge. Numerical simulation is carried out by TWOPM-3D (three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. To do this, the solitary wave is generated numerically in numerical wave channel, and numerical results and experimental results were compared and analyzed in order to verify the applicability of force acting on an onshore bridge. From this, we discussed precisely the characteristics of horizontal and vertical forces (uplift and downward forces) changes including water level and velocity changes due to the variation of solitary wave height, water depth, onshore bridge's location and type, and number of girder. Furthermore, It is revealed that the maximum horizontal and vertical forces acting on the girder bridge show different varying properties according to the number of girder, although each maximum force acting on the girder bridge is proportional to the increasement of incident solitary wave height, and the entrained air in the fluid flow affects the vertical force highly.

Simulation of Solitary Wave-Induced Dynamic Responses of Soil Foundation Around Vertical Revetment (고립파 작용하 직립호안 주변에서 지반의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.367-380
    • /
    • 2014
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The targeted coastal structure object in this study can be damaged mainly by the tsunami force together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the solitary wave was generated using 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the estimated surface boundary of the vertical revetment. Simulation results were used as an input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure, effective stress, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.