• Title/Summary/Keyword: 지진부지응답

Search Result 72, Processing Time 0.028 seconds

Seismic Risk Assessment on Buried Electric Power Tunnels with the Use of Liquefaction Hazard Map in Metropolitan Areas (액상화 재해지도를 이용한 수도권 전력구 매설지반의 지진시 위험도 평가)

  • Baek, Woohyun;Choi, Jaesoon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • In this study, the seismic risk has been evaluated by setting the bedrock acceleration to 0.154g which, was taking into consideration that the earthquake return period for the buried electric power tunnels in the metropolitan area to be 1,000 years. In this case, the risk assessment during the earthquake was carried out in three stages. In the first stage, the site classification was performed based on the site investigation data of the target area. Then, the LPI(Liquefaction Potential Index) was applied using the site amplification factor. After, candidates were selected using a hazard map. In the second stage, risk assessment analysis of seismic response are evaluated thoroughly after the recalculation of the LPI based on the site characteristics from the boring logs around the electric power area that are highly probable to be liquefied in the first stage. The third Stage visited the electric power tunnels that are highly probable of liquefaction in the second stage to compensate for the limitations based on the borehole data. At this time, the risk of liquefaction was finally evaluated based off of the reinforcement method used at the time of construction, the application of seismic design, and the condition of the site.

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis (부지응답해석을 이용한 지역별 대표 진도 산출 연구)

  • Ahn, Jae-Kwang;Son, Su-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2020
  • Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.

Structural response monitoring system of large floating structures (대형 부유구조물의 구조응답 모니터링 시스템)

  • 김재동
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.67-75
    • /
    • 1996
  • 일찌기 20세기 초반부터 지구의 마지막 남은 자원의 보고로서 또한 미래의 생화공간으로서 해양에 대한 관심이 고조되어 왔다. 해양의 에너지/광물 자원의 개발을 위한 노력은 이미 1950년대 부터 시작되어 상당한 가시적인 성과를 얻고 있다. 최근에는 특히 환경보존에 대한 관심이 고조됨에 따라 육상기피시설물(공항, 폐기물 처리시설, 원자력 발전설비 등)들의 부지확보 문제를 해결하기 위하여 해양공간을 활용하는 방안이 선진각국에서 연구되고 있으며, 그중 가장 타당성이 높은 방안의 하난로서 각종 생산활동을 위한 플랜트를 대형 부유구조물 위에 설치하는 해상플랜트(Barge Mounted Plant, BMP)가 제안되고 있다. 원자력 발전설비를 비롯한 대형 프랜트를 부유구조물 위에 설치할 경우, 지진의 영향을 극소화 할 수 있다는 장점이 있으나 해상의 파도, 조류, 바람, 일사에 의한 갑판의 열변형 등 불규칙적인 환경하중에 노출되므로 이러한 환경조건하에서 구조물이 설계 수명 동안 안전하게 기능을 다할 수 있는지를 세심하게 검토할 필요가 있다. 따라서 BMP의 안전성 평가방법에 대한 신뢰도를 높이고 평가결과에 대한 합리성을 제고하는 한편, 이를 바타응로 현재까지는 설계/건조 경험이 전무한 초대형 부유구조물의 구조설계와 관련된 기초기술 및 응용기술을 확보하는 문제는 가장 시급히 해결되어야 할 부분이다.

  • PDF

Analysis of Characteristics of Vertical Response Spectrum of Ground Motions from Domestic Earthquakes (국내 관측자료를 이용한 수직 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung;Hong, Seung-Min;Park, Ki-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • The vertical response spectra using the observed ground motions from the recent more than 30 macro earthquakes were analysed and then were compared both to the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and to the Korean Standard Design Response Spectrum for general structures and buildings (1997). 176 vertical ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum had strong dependency on epicentral distance. The results also showed that the vertical response spectra revealed much higher values for frequency bands above 5~7 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.2 second (5 Hz) than the Korean Standard Response Spectrum (SD soil condition). These frequency-dependent spectral values could be related to the characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of vertical seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Analysis of Characteristics of Horizontal Response Spectrum of Ground Motions from 19 Earthquakes (국내 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.399-407
    • /
    • 2010
  • The horizontal response spectra using the observed ground motions from the recent more than 19 macro earthquakes were analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). 130 horizontal ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum have strong dependency on epicentral distance. The results also showed that the horizontal response spectra revealed much higher values for frequency bands above 5 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.3 second than the Korean Standard Response Spectrum (SD soil condition). These spectral values dependent on frequency could be related to characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Evaluation of Earthquake Ground Motion Considering Dynamic Site Characteristics in Korea (국내 지반특성에 적합한 설계지반운동 결정 방법에 대한 연구)

  • Yoon, Jong-Ku;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.23-32
    • /
    • 2004
  • The local geologic and dynamic site characteristics, which include soil profiles, shear wave velocity profiles and depths to the bed rock were gathered from 148 sites all over the Korean peninsula and those values are compared to those in the western USA. Site response analyses were performed based on equivalent linear scheme using design rock-outcrop acceleration of 0.154g which corresponds to the collapse level of earthquake for seismic category I structure. The results show that the amplification factor based on Korean seismic design guideline underestimates the motion in short-period range and overestimates the motion in mid-period range. It is suggested that the existing Korean seismic guideline based on UBC is required to be modified considering dynamic site characteristics in Korea for the reliable estimation of site amplification.

A Study on the Focal Mechanism of the Hongsung Earthquake from the P-Wave Polarity Distributions (초동극성분포를 이용한 홍성지진의 Focal Mechanism 연구)

  • 김준경
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.121-136
    • /
    • 1991
  • The focal mechanism of the Hongsung Earthquake (1978. Oct. 7, M$_L$=5.0, Latitude 36.62N, Longitude 1 26.67E) was evaulated using the polarity distribution of the P-Waveforms. Through the non-linear computer process, the compatibility of polarity distributions of the 9 P-Waveforms observed at teleseismic distances from the Hongsung Earthquake epicenter was investigated to those of the focal mechanism determined from the varying strike, dip and rake angles. The resultant values for the strike and dip angle of the principal fault plane, which apparently matches very well the sunface lineament of the Hongsung region, are determined to be about 247 degree and 78 degree with uncertainties, respectively. However, the rake angle of the focal mechanism has wide range of 40 degree to 160 degree, which is mainly due to the poor coverage of the azimuthal angle of the observed seismic stations. Due to the consistency of principal stress axes, the resultant focal mechanism could support the current stress regime of that region, which may be caused by subduction of the Pacific Plate under the Eurasia Plate along the Japan Trench. It also provides information of seismic source characteristics of the part of the Korean Peninsula for aseismic design criteria such as Site Specific Response Spectrum and Strong Ground Motion Time History for the nuclear power plants and related nuclear waste disposal facility sites.

  • PDF

Analysis of Characteristics of Horizontal Response Spectrum of Velocity Ground Motions from 5 Macro Earthquakes (5개 중규모 지진의 속도 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.471-479
    • /
    • 2011
  • The velocity horizontal response spectra using the observed ground motions from the recent 5 macro earthquakes, equal to or larger than 4.8 in magnitude, around Korean Peninsula were analysed and then were compared to the acceleration horizontal response spectra, seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and finally the Korean Standard Design Response Spectrum for general structures and buildings. 102 velocity horizontal ground motions, including NS and EW components, were used for velocity horizontal response spectra and then normalized with respect to the peak velocity value of each ground motion. First, the results showed that velocity horizontal response spectra have larger values at the range of medium natural period, but acceleration horizontal response spectra have larger values at the range of short natural periods. Secondly, the results also showed that velocity horizontal response spectra exceed Reg. Guide 1.60 for longer natural periods bands less than 6-7 Hz. Finally, the results were also compared to the Korean Standard Response Spectrum for the 3 different soil types(SC, SD, and SE soil type) and showed that velocity horizontal response spectra revealed much higher values for the frequency bands below 1.5(SC), 2.0(SD), and 3.0(SE) seconds, respectively, than the Korean Standard Response Spectrum. The results suggest that the fact that acceleration, velocity, and displacement horizontal response spectra have larger values at the range of short, medium, and long natural periods, respectively, can be applied consistently to those form domestic ground motion, especially, the velocity ground motion. Information on response spectrum at such medium range periods can be very important since the domestic design of buildings and structures emphasizes recently medium and long natural periods than short one due to increased super high-rise buildings.

Evaluation of Liquefaction Triggering for the Pohang Area Based on SPT and CPT Tests (SPT와 CPT 지반조사결과에 기초한 포항지역 액상화 위험도 평가)

  • Kim, Yeon-Jun;Ko, Kil-Wan;Kim, Byung-Min;Park, Du-Hee;Kim, Ki-Seog;Han, Jin-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.57-71
    • /
    • 2020
  • Liquefaction-induced sand boils were observed during the Pohang earthquake (Moment magnitude, 5.4) on November 15, 2017, specifically in the region of agricultural fields and park areas near the epicenter. This was recorded as the first observed liquefaction phenomenon in Korea. This paper analyzes liquefaction potentials at the key sites at Pohang area. The simplified methods and current design standard were used to evaluate the occurrence of liquefaction. The seismic demand was estimated based on the NGA-WEST2 ground motion prediction equations (GMPEs). The liquefaction resistance of the ground was determined using the in-situ tests: standard penetration test (SPT) and cone penetration test (CPT). The liquefaction potentials were quantified by liquefaction potential index (LPI), which were compared with those from the previous studies.

Verification of Frequency-Dependent Equivalent Linear Method (주파수 의존성을 고려한 등가선형해석기법의 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.113-120
    • /
    • 2008
  • One-dimensional site response analysis is widely used to simulate the seismic site effects. The equivalent linear analysis, which is the most widely used type of site response analysis, is essentially a linear method. The method applies constant shear modulus and damping throughout the frequency range of the input motion, ignoring the dependence of the soil response on the loading frequency. A new type of equivalent linear analysis method that can simulate the frequency dependence of the soil behavior via frequency-strain curve was developed. Various forms of frequency-strain curves were proposed, and all curves were asserted to increase the accuracy of the solution. However, its validity has not been extensively proven and the effect of the shape of the frequency-strain curve is not known. This paper used two previously proposed frequency-strain curves and three additional curves developed in this study to evaluate the accuracy of the frequency-dependent equivalent linear method and the influence of the shape of the frequency-strain curves. In the evaluation, six recordings from three case histories were used. The results of the case study indicated that the shape of the frequency-strain curve has a dominant influence on the calculated response, and that the frequency dependent analysis can enhance the accuracy of the solution. However, a curve that results in the best match for all case histories did not exist and the optimum curve varied for each case. Since the optimum frequency-strain curve can not be defined, it is recommended that a suite of curves be used in the analysis.