• Title/Summary/Keyword: 지진관측소

Search Result 137, Processing Time 0.025 seconds

Validation on the Bodywave Magnitude Estimation of the 2017 DPRK's Nuclear Test by Source Scaling (지진원 상대비율 측정법을 이용한 2017년 북한 핵실험의 실체파 규모 검증)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.589-593
    • /
    • 2018
  • Democratic Peoples' Republic of Korea (DPRK) conducted the $6^{th}$ underground nuclear test at the Punggye-ri underground nuclear test site on September 27, 2017 12 hours 30 minutes of Korean local time. Comprehensive Nuclear-Test Ban Treaty Organization (CTBTO) under U.N. announced the body wave magnitude of the event was mb 6.1 while U.S. Geological Survey (USGS)'s calculation was mb 6.3. In this study, the differences of the magnitude estimates were investigated and verified. For this purpose, a source scaling between the $5^{th}$ and $6^{th}$ event, which's epicenters are 200 meters apart, was performed using seismic data sets from 30 broadband stations. The relative amplitude variations of the $6^{th}$ event compared to the $5^{th}$ event in the frequency domain was analyzed through the scaling. The increased amount of the bodywave magnitude $m_b$ for the $6^{th}$ event was calculated at 1 Hz, which was compared to those from USGS and CTBTO's calculations.

A Feasibility Study for Measuring Seismic Acceleration and Building Seismological Observatory (지진가속도 계측 및 지진관측소 구축 타당성 연구)

  • Han, Sang-Mok;Woo, Nam-Sub;Ha, Ji-Ho;Kim, Tea Woo;Lee, Wang-Do;Kim, Ki-Seog;Yang, Jae-Yeol;Kim, Young-Ju
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.411-417
    • /
    • 2020
  • Therefore, it was agreed that an earthquake monitoring station should be set up within the site of Handong University by analyzing drilling data and Disaster such as earthquakes is urgently needed to prepare for earthquakes in that people's lives and national development depend on the nation's ability to manage disasters. Many experts say that the Korean Peninsula is also under the influence of earthquakes and is not a safe zone for earthquakes. A seismological observatory will be established in Pohang to monitor ground sensors and study seismic characteristics through the task of "Development of Smart Sensor-based Intelligent Information Platform in Earthquake Region." Therefore, it was agreed to set up a seismological observatory within the site of Handong University by analyzing drilling data and conducting on-site surveys in northern Pohang, which were heavily damaged by liquefaction and earthquakes. In this study, it was decided to make a comprehensive judgment by considering the geological characteristics of the site, whether it can perform functions, and the convenience of construction and maintenance for the final site of the seismological observatory discussed with Handong University. After completing a feasibility review on selecting a site for Handong University, we will establish a seismological observatory and actively utilize it for seismic research using data from alarm issuance and seismic data in the event of a future earthquake.

Q Estimates Using the Coda Waves in the Kyeongsang Basin (Coda 파를 이용한 경상분지에서의 Q값 추정)

  • 이기화
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.67-74
    • /
    • 1999
  • In this study, coda Q has been determined by the single scattering model in the Kyeongsang Basin region using the decay of the amplitudes of coda waves on bandpass-filtered seismograms of local microearthquakes in the frequency range 1.5~18 Hz. Reported frequency dependence of Q is of the form $Q_C=Q_O ^n$$(83.9{ll}Q_0{ll}155.9,;0.76{ll}n{ll}1.05$. Considering a model incorporating both scattering and intrinsic attenuation, and assuming that the attenuation is entirely due to the scattering loss, the minimum mean free paths are about 51~56 km and the coefficients of inelastic attenuation(${\gamma}$) are between 0.0093 and 0.0098 were found. Earthquake-station paths pass through the fault zone show high attenuation and strong frequency dependency compared to other ones.

  • PDF

A Study on the Parameter Determination of Crustal Movement by Geodetic Technique (측지학적 방법에 의한 지각변동 매개변수 결정에 관한 연구)

  • 조규전;정의환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.405-414
    • /
    • 2001
  • Plate tectonics is a dominant paradigm in modern geophysics. Because of its geological mechanism, Korea has a possibility of earthquake according to plate motion. Besides the disaster of earthquake grows rapidly, the importance of recognition for earthquake has been emphasized. This study attempts to decide crustal movement parameters with GPS data, analysed baseline after processing data with GIPSY-OASIS II S/W, observed from 6 stations in and around the Korean peninsula, and obtained from selected 11 stations in Korea. As a results, maximum shear strain was $0.04{\mu}/yr$ and the mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $97.75^{\circ}$ in and around the Korean peninsula. The average rate of the maximum shear strain($({\gamma}_max)$) is $0.17{\mu}/yr$. The mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $70.25^{\circ}$ in Korea. Such a pattern of strain distribution is harmonious with that of seismic activity in Korea both historically as well as today.

  • PDF

Possible Methods of Identifying Underground Cavities Using Seismic Waves (지진파를 이용한 지하 공동의 탐지 방법)

  • 김소구;마상윤;김지수
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.137-153
    • /
    • 1996
  • The purpose of this study is to investigate the possibilities of identifying and detecting underground cavities using seismic waves recorded by the fixed and mobile stations. During 18 months of field work we recorded chemical explosions near the Bongdarn station. Seismic Stations were installed on the free surface and underground inside the Samba mine. The seismograms at the fixed(lorg-term) seismic station show abrupt change of polarization characteristics which can he associated with the appearance of P-to-S converted phase(PS) at 150 ~ 200 msec after the first P arrival. This result indicates that converted phases are generated very near to the Bongdarn station at a depth of 190m. Shear-wave splitting phenomena have also been observeci The time delay between fast shear(fS) and slow shear(sS) waves ranges between 30 and 60 msec(average is 42 msec). However, exact time delay between the fast and the slow shear waves can not be accurately measured because of the very short time delay and limitation of sampling rate. Chemical explosion experiments were recorded at stations along various paths to contrast the seismic response of areas with and without cavities. The seismograms recorded at the stations installed at cavity areas show an abrupt change of polarization characteristics but not on the other stations. Seismic waves propagating through the cavity are characterized by the attenuation of high frequency waves and predominantly low frequency seismic waves after the S wave arrivals.

  • PDF

Monitoring North Korea Nuclear Tests: Comparison of 1st and 2nd Tests (북한 핵실험 모니터링 : 1, 2차 비교)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Che, Il-Young;Sheen, Dong-Hoon;Shin, Jin-Soo;Cho, Chang-Soo;Lee, Hee-Il
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • Two suspicious events, which were claimed as underground nuclear tests by North Korea, were detected in the northern Korean Peninsula on October 9, 2006 and May 25, 2009. The KIGAM and Korea-China Joint seismic stations are distributed uniformly along the boundaries between North Korea and adjacent countries. In this study, the data from broadband stations with the distance of 200 to 550 km from the test site are used to analyze and compare two nuclear tests of North Korea. By comparing the time differences of the Pn-wave arrival times of 1st and 2nd tests at multiple stations, the relative locations of two test sites could be calculated precisely. From the geometrical calculation with the velocity of Pn wave $V_{Pn}$ = 8 km/s, the 2nd test site is estimated to move in the WNW direction from 1st one with the distance of 2 km. Body wave magnitude, mb of the 2nd test, which was announced officially as the network average of 4.5, varies widely with the directional location of stations from 4.1 to 5.2. The magnitude obtained from Lg wave, $m_b$(Lg), shows less variation between 4.3 to 4.7 with the average of 4.6. The moving-window spectra of time traces of 1st and 2nd tests show very similar pattern with different scale level. In addition, the corner frequencies of P wave of 1st and 2nd tests at each station show no or negligible difference. This indicates the burial depths of two tests might be very similar. The relative yield amount of the 2nd test is estimated 8 times larger than that of the 1st from the weighted average of ground-velocity amplitude ratios.

Analysis of the Characteristics of the Seismic source and the Wave Propagation Parameters in the region of the Southeastern Korean Peninsula (한반도 남동부 지진의 지각매질 특성 및 지진원 특성 변수 연구)

  • Kim, Jun-Kyoung;Kang, Ik-Bum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.135-141
    • /
    • 2002
  • Both non-linear damping values of the deep and shallow crustal materials and seismic source parameters are found from the observed near-field seismic ground motions at the South-eastern Korean Peninsula. The non-linear numerical algorithm applied in this study is Levenberg-Marquadet method. All the 25 sets of horizontal ground motions (east-west and north-south components at each seismic station) from 3 events (micro to macro scale) were used for the analysis of damping values and source parameters. The non-linear damping values of the deep and shallow crustal materials were found to be more similar to those of the region of the Western United States. The seismic source parameters found from this study also showed that the resultant stress drop values are relatively low compared to those of the Western United Sates. Consequently, comparisons of the various seismic parameters from this study and those of the United States Seismo-tectonic data suggest that the seismo-tectonic characteristics of the South eastern Korean Peninsula is more similar to those of the Western U.S.

Installation and Data Analysis of Superconducting Gravimeter in MunGyung, Korea; Preliminary Results (문경 초전도 중력계 설치 및 기초자료 분석)

  • Kim, Tae-Hee;Neumeyer, Juergen;Woo, Ik;Park, Hyuck-Jin;Kim, Jeong-Woo
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.445-459
    • /
    • 2007
  • Superconducting Gravimeter(SG) was installed and has been successfully operated at MunGyung, Kyungsang province in Korea in March 2005. It was registered as the 21st observatory of the Global Geodynamics Project. Since SG can precisely measure the gravity variations below the 1mHz frequency band, it has the outstanding capability to sense and resolve many different periodic gravity components from each other. From the raw data collected between 18 March 2005 and 21 February 2006 diurnal and semi-diurnal tidal band's residual gravity components were analyzed. During this process, the instrumental noises, air pressure, and ground water corrections were carried out. Values of $-3.18nm/s^2/hPa\;and\;17nm/s^2/m$ were used respectively in the air pressure and groundwater corrections. Hartmann-Wenzel and Whar-Dehant Earth tide models were adopted to compute the residual gravity for Q1, O1, P1, K1, M2, N2, S2, K2 tidal bands. For the ocean loading correction, SCW80, FES952, and FES02 models were used and compared. As a result, FES02 ocean loading model has shown the best match for the data processing at MunGyung SG MunGyung SG gravity was compared with GRACE satellite gravity. The correlation coefficient between the two gravity after groundwater correction was 0.628, which is higher than before ground water correction. To evaluate sensitivity at MunGyung SG gravity statition, the gravity data measured during 2005 Indodesian earthquake was compared with STS-2 broad band seismometer data. The result clearly revealed that the SG could recorded the same period of earthquake with seismometer event and a few after-shock events those were detected by seismometer.

A Study of Q$_P^{-1}$ and Q$_S^{-1}$ Based on Data of 9 Stations in the Crust of the Southeastern Korea Using Extended Coda Normalization Method (확장 Coda 규격화 방법에 의한 한국남동부 지각의 Q$_P^{-1}$, Q$_S^{-1}$연구)

  • Chung, Tae-Woong;Sato, Haruo;Lee, Kie-Hwa
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.500-511
    • /
    • 2001
  • For the southeastern Korea aound the Yangsan fault we measured Q$_P^{-1}$ and Q$_S^{-1}$ simultaneously by using the extended coda-normalization method for seismograms registered at 9 stations deployed by KIGAM. We analyzed 707 seismograms of local earthquakes that occurred between December 1994 and February 2000. From seismograms, bandpass filtered traces were made by applying Butterworth filter with frequency-bands of 1${\sim}$2, 2${\sim}$4, 4${\sim}$8, 8${\sim}$16 and 16${\sim}$32 Hz. Estimated Q$_P^{-1}$ and Q$_S^{-1}$ values decrease from (7${\pm}$2)${\times}$10$^{-3}$ and (5${\pm}$4)${\times}$10$^{-4}$ at 1.5 Hz to (5${\pm}$4)${\times}$10$^{-3}$ and (5${\pm}$2)${\times}$10$^{-4}$ at 24 Hz, respectively. By fitting a power-law frequency dependent to estimated values over the whole stations, we obtained 0.009 (${\pm}$0.003)f$^{-1.05({\pm}0.14)$ for Q$_P^{-1}$ and 0.004 (${\pm}$0.001)f$^{-0.75({\pm}0.14)$) for Q$_S^{-1}$, where f is frequency in Hz.

  • PDF

Tectonic Features of a Triple-Plate Junction in Hokkaido Using Local Seismic Tomography

  • Kim, So-Gu;Bae, Hyung-Sub;Pak, Sang-Pyo
    • Proceedings of the KSEG Conference
    • /
    • 2005.04a
    • /
    • pp.101-106
    • /
    • 2005
  • The three-dimensional Tomography developed by Kim and Bae(2004) was applied to 64,024 P and 64,618 S wave arrival times observed at 238 seismic stations for 4050 local earthquakes in the depth range from 0 to 300 km in and around Hokkaido, Japan. High and low velocity zones for Vp/Vs were clearly imaged in and around Hokkaido. The upper seismic planes of the double seismic zone (DSZ) were found in the subducted Pacific Plate beneath Hokkaido at depth of 40- 80 km, which produced high seismicity around Hokkaido. The findings of high Vp/Vs anomalies beneath the Moho discontinuity supports an evidence of a surface triple-collision hypothesis prepared by Moriya(1994) that the Kuril Arc(Okhotsk Plate or North American Plate) is colliding against the NE Japanese Arc(Amurian Plate or Eurasian Plate), along and beneath the Hidaka Mountain Range, and at the same time the Pacific Plate is subducting into these two plates, making an equilibrium of tectonic forces along the Hikada Mountain Range (HMR) corner and the central tectonic axis(142 ~ 143E) in Hokkaido. The low Vp and Vs were also found in east and west along the central tectonic axis in which the focal mechanism represents the extensional forces. These phenomena are also consistent with low Bouguer gravity anomalies in this region. It is understood why most of great earthquakes occurred outside Hokkaido where the balance of tectonic forces are breaking from the triple junction of three tectonic forces in Hokkaido.

  • PDF