• Title/Summary/Keyword: 지지벡터기

Search Result 40, Processing Time 0.02 seconds

Online Signature Verification Method using General Handwriting Data (일반 필기 데이터를 이용한 온라인 서명 검증 기법)

  • Heo, Gyeongyong;Kim, Seong-Hoon;Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2298-2304
    • /
    • 2017
  • Online signature verification is one of the simple and efficient method of identity verification and has less resistance than other biometric technologies. In training to build a verification model, negative samples are required to build the model, but in most practical applications it is not easy to get negative samples - forgery signatures. In this paper, proposed is a method using someone else's signatures as negative samples. In verification, shape-based features extracted from the time-sequenced signature data are extracted and a support vector machine is used to verify. SVM tries to map a feature vector to a high dimensional space and to draw a linear boundary in the high dimensional space. SVM is one of the best classifiers and has been applied to various applications. Using general handwriting data, i.e., someone else's signatures which have little in common with positive samples improved the verification rate experimentally, which means that signature verification without negative samples is possible.

A Tensor Space Model based Deep Neural Network for Automated Text Classification (자동문서분류를 위한 텐서공간모델 기반 심층 신경망)

  • Lim, Pu-reum;Kim, Han-joon
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.3-13
    • /
    • 2018
  • Text classification is one of the text mining technologies that classifies a given textual document into its appropriate categories and is used in various fields such as spam email detection, news classification, question answering, emotional analysis, and chat bot. In general, the text classification system utilizes machine learning algorithms, and among a number of algorithms, naïve Bayes and support vector machine, which are suitable for text data, are known to have reasonable performance. Recently, with the development of deep learning technology, several researches on applying deep neural networks such as recurrent neural networks (RNN) and convolutional neural networks (CNN) have been introduced to improve the performance of text classification system. However, the current text classification techniques have not yet reached the perfect level of text classification. This paper focuses on the fact that the text data is expressed as a vector only with the word dimensions, which impairs the semantic information inherent in the text, and proposes a neural network architecture based upon the semantic tensor space model.

Performance Improvement by a Virtual Documents Technique in Text Categorization (문서분류에서 가상문서기법을 이용한 성능 향상)

  • Lee, Kyung-Soon;An, Dong-Un
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.501-508
    • /
    • 2004
  • This paper proposes a virtual relevant document technique in the teaming phase for text categorization. The method uses a simple transformation of relevant documents, i.e. making virtual documents by combining document pairs in the training set. The virtual document produced by this method has the enriched term vector space, with greater weights for the terms that co-occur in two relevant documents. The experimental results showed a significant improvement over the baseline, which proves the usefulness of the proposed method: 71% improvement on TREC-11 filtering test collection and 11% improvement on Routers-21578 test set for the topics with less than 100 relevant documents in the micro average F1. The result analysis indicates that the addition of virtual relevant documents contributes to the steady improvement of the performance.

Performance Comparison of Machine Learning Algorithms for TAB Digit Recognition (타브 숫자 인식을 위한 기계 학습 알고리즘의 성능 비교)

  • Heo, Jaehyeok;Lee, Hyunjung;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • In this paper, the classification performance of learning algorithms is compared for TAB digit recognition. The TAB digits that are segmented from TAB musical notes contain TAB lines and musical symbols. The labeling method and non-linear filter are designed and applied to extract fret digits only. The shift operation of the 4 directions is applied to generate more data. The selected models are Bayesian classifier, support vector machine, prototype based learning, multi-layer perceptron, and convolutional neural network. The result shows that the mean accuracy of the Bayesian classifier is about 85.0% while that of the others reaches more than 99.0%. In addition, the convolutional neural network outperforms the others in terms of generalization and the step of the data preprocessing.

Utilizing Unlabeled Documents in Automatic Classification with Inter-document Similarities (문헌간 유사도를 이용한 자동분류에서 미분류 문헌의 활용에 관한 연구)

  • Kim, Pan-Jun;Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.1 s.63
    • /
    • pp.251-271
    • /
    • 2007
  • This paper studies the problem of classifying documents with labeled and unlabeled learning data, especially with regards to using document similarity features. The problem of using unlabeled data is practically important because in many information systems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. There are two steps In general semi-supervised learning algorithm. First, it trains a classifier using the available labeled documents, and classifies the unlabeled documents. Then, it trains a new classifier using all the training documents which were labeled either manually or automatically. We suggested two types of semi-supervised learning algorithm with regards to using document similarity features. The one is one step semi-supervised learning which is using unlabeled documents only to generate document similarity features. And the other is two step semi-supervised learning which is using unlabeled documents as learning examples as well as similarity features. Experimental results, obtained using support vector machines and naive Bayes classifier, show that we can get improved performance with small labeled and large unlabeled documents then the performance of supervised learning which uses labeled-only data. When considering the efficiency of a classifier system, the one step semi-supervised learning algorithm which is suggested in this study could be a good solution for improving classification performance with unlabeled documents.

Classification of ratings in online reviews (온라인 리뷰에서 평점의 분류)

  • Choi, Dongjun;Choi, Hosik;Park, Changyi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.845-854
    • /
    • 2016
  • Sentiment analysis or opinion mining is a technique of text mining employed to identify subjective information or opinions of an individual from documents in blogs, reviews, articles, or social networks. In the literature, only a problem of binary classification of ratings based on review texts in an online review. However, because there can be positive or negative reviews as well as neutral reviews, a multi-class classification will be more appropriate than the binary classification. To this end, we consider the multi-class classification of ratings based on review texts. In the preprocessing stage, we extract words related with ratings using chi-square statistic. Then the extracted words are used as input variables to multi-class classifiers such as support vector machines and proportional odds model to compare their predictive performances.

A Study on Macroeconomic Linkages between the USA and Japan (미일간 거시경제적 연계성에 대한 연구)

  • Lee, Jai Ki
    • International Area Studies Review
    • /
    • v.15 no.3
    • /
    • pp.175-188
    • /
    • 2011
  • This study aims to examine how the U.S. economic shocks affect the Japanese economy. It is widely believed that the U.S. economy has a significant effect on the Japanese economy. Actually, the U.S. accounts for a considerable amount of Japan's exports and imports. To the economic policymakers, it is very important to know how economic disturbances generated by the U.S. are transmitted to the Japanese economy. A vector autoregression(VAR) model is employed to investigate the international transmission channel of economic disturbances. The interactions of the U.S.-Japansese economy are investigated by using variance decompositions(VDCs). The results of this study provided the evidence that the U.S. economic shocks were important for the Japanese economy during the sample period. This study supports the notion of economic dependence of smaller open economy such as Japan as compared with larger economy such as the U.S.

Competition Relation Extraction based on Combining Machine Learning and Filtering (기계학습 및 필터링 방법을 결합한 경쟁관계 인식)

  • Lee, ChungHee;Seo, YoungHoon;Kim, HyunKi
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.367-378
    • /
    • 2015
  • This study was directed at the design of a hybrid algorithm for competition relation extraction. Previous works on relation extraction have relied on various lexical and deep parsing indicators and mostly utilize only the machine learning method. We present a new algorithm integrating machine learning with various filtering methods. Some simple but useful features for competition relation extraction are also introduced, and an optimum feature set is proposed. The goal of this paper was to increase the precision of competition relation extraction by combining supervised learning with various filtering methods. Filtering methods were employed for classifying compete relation occurrence, using distance restriction for the filtering of feature pairs, and classifying whether or not the candidate entity pair is spam. For evaluation, a test set consisting of 2,565 sentences was examined. The proposed method was compared with the rule-based method and general relation extraction method. As a result, the rule-based method achieved positive precision of 0.812 and accuracy of 0.568, while the general relation extraction method achieved 0.612 and 0.563, respectively. The proposed system obtained positive precision of 0.922 and accuracy of 0.713. These results demonstrate that the developed method is effective for competition relation extraction.

A Korean Community-based Question Answering System Using Multiple Machine Learning Methods (다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1085-1093
    • /
    • 2016
  • Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.