도심지에는 많은 지중 매설관이 설치되어 있으며, 이러한 지중 관로의 위치(깊이, 방향 등)은 굴착을 수행하기 전에 특정되어야 한다. 지중 매설관을 탐지하기 위해 다양한 지구물리학적인 방법을 사용할 수 있으나, 지반의 불균질성으로 인해 정확한 위치정보를 파악하는 것은 어렵다. 다양한 비파괴 탐사 방법 중 GPR (ground penetrating radar)는 고속으로 실험이 가능하며, 다른 탐사 방법에 비해 상대적으로 저렴한 탐사비용 등의 장점을 갖는다. 그러나 GPR의 탐사 데이터는 해석이 직관적이지 않아 상당한 전문적 지식이 요구된다. 최근 딥러닝을 이용한 탐사 데이터의 자동판독 기술에 대한 연구가 증가하고 있으나, 매설물의 위치를 정확히 알고 있는 탐사 데이터가 부족하여 학습모델 구축에 어려움이 있다. 이를 해결하기 위해 본 연구에서는 이러한 문제를 FDTD (finite difference time domain)수치해석을 통해 해결하고 자동탐지 학습 모델의 성능을 향상시키기 위한 기초연구를 수행하였다. 첫째, 단일유전율로 구성된 균질지반을 구성하고 해석을 수행하였다. 불균질 지반의 경우 프랙탈 기법을 이용하여 모델을 구성하고 해석을 수행하였다. 둘째, 합성곱 신경망을 이용하여 딥러닝 학습을 수행하였다. Model-A는 균질 지반 해석 데이터만 이용하여 학습을 수행하였으며, Model-B는 균질 및 불균질 지반 해석 데이터를 이용하여 학습을 수행하였다. 그 결과 Model-B가 Model-A보다 탐지성능이 우수한 것을 확인하였다. 이는 자동탐지 모델의 학습 시, 지반의 불균질성을 포함하여 학습을 수행하면 탐지 모델의 성능이 개선됨을 의미한다.
본 연구는 지중에서 배관이 교차할 때 상부 강성관이 하부 연성관에 영향을 미치는 유효 깊이와 유효 길이에 대한 개념을 이용하여 두 매설 배관의 교차 정도와 배관 사이의 거리에 따른 하부 매설 배관의 영향범위를 파악 하고자한다. 이를 위하여 상부 배관과 하부 배관을 각각 원심력 철근콘크리트관과 가스수송용 강관으로 구현하였다. 이때 1.0m에 매설된 상부 배관으로부터 하부 배관은 각각 0.5m에서 5m의 매설심도를 가지며 두 배관의 교차각을 0, 30, 60, $90^{\circ}$로 변화하여 연구를 진행하였다. 그 결과 유효깊이는 두 매설 배관의 교차각이 증가함에 따라 증가하며, 두 매설관 사이의 거리가 증가함에 따라 감소하다 일정 값으로 수렴하게 된다. 또한 두 교차 배관의 교차 각 증가에 따른 유효길이와 휨응력 합의 관계를 정리하였다.
측방유동 지반 속에 설치된 매설관의 측방이동과 이에 대한 성토지지말뚝의 방지효과를 관찰하기 위하여 일련의 현장 실험시공을 시행하였다. 매립중인 서해안 연약지반에 지하매설관(H.P:400mm)를 부설하고 인접 위치에 성토를 3단계로 시행하여 침하판과 지중경사계를 이용하여 지하매설관의 수직변위(침하)와 수평변위를 확인하였다. 성토에 따른 측방유동 억지대책으로는 성토지지말뚝을 설치하였다. 실험시공 결과 성토도중에는 매설관이 미미하게 융기하는 현상이 발생하였고 추후 침하하다 점차 수렴하는 거동으로 나타났다. 성토지지말뚝 보강 효과는 약 2.0배로 확인되었다. 또한, 침하와 변위는 상부지반에서는 크고 하부지반에서는 적게 침하가 발생하였고 변위는 비례하여 발생하는 것으로 나타났다.
소성흐름을 발생시키는 측방유동 가능지반내에 설치된 매설관에 작용하는 토압에 대한 메카니즘을 규명하기 위해 파괴형상실험을 실시하고, 파괴형상실험을 토대로 지반변형속도를 고려하기 위해 Maxwell 점탄성 모델을 적용한 토압산정식을 제안하였다. 직접전단실험으로 구한 점성계수와 내부마찰각과 상재압을 고정하여 이론식으로 도출해낸 점성계수가 잘 일치하고 있음을 확인하였고 모형실험결과와 이론식에 의한 토압은 지반변형속도에 영향을 받으며 비교적 일치하며 지반변형이 없는 경우에도 정지토압을 받음을 알 수 있다. 또한, 지반의 지지력은 점성토에서는 관입전단파괴시의 값과 거의 일치하였다. 또한, 매설관 주변지반의 파괴모드는 매설관직경과 무관하게 지반변형속도에 영향을 받으며 작용토압은 균질한 지층의 경우 선형적으로 증가하고 조립질에 가까울수록 선형적 감소치를 보이므로 매설관주변지반의 매립재를 이용하여 매설관주변의 토압을 경감시킬 수 있음을 알 수 있다.
300 m 이상의 장심도 지중열교환기는 도심지나 넓은 부지를 확보가기 어려운 지역에 지열냉난방 시스템을 경제적으로 설치하는데 유리하다. 그러나 실제 시공에서는 여러 가지 문제들로 인하여 보편적으로 시도되지 않았고, 일반적으로 100 ~ 200m 심도로 설치되어 왔다. 본 연구에서는 일반적인 시추공 직경 150 mm에 U 파이프는 50A 규격으로 외경 50 mm의 300 m 심도로 지중열교환기를 설치하였다. 고밀도 PE관은 단위 길이당 비중이 $0.94{\sim}0.96g/cm^3$으로 지열공 내부에 채워진 지하수 영향으로 부력이 존재하여, 이를 개선하기 위해 4.6 kg 무게의 금속으로 제작된 하중밴드 10개조를 설치하여 부력의 영향을 감소시켰다. 지중열교환기의 길이 산정 및 성능평가를 위한 기초조사로서 지반조사 및 열응답실험이 실시되었다. 지반내 온도구배는 100 m 심도까지는 주변 지하수 이용에 의한 영향 등으로 $15^{\circ}C$ 정도의 분포를 보이며 그 하부는 $1.9^{\circ}C/100m$의 지온증온율을 나타내고 있다. 열응답실험은 기존에 설정된 표준 방식으로 48 시간 진행되었으며 평균 주입전력은 17.5 kW이며 평균 순환수 유량은 28.5 l/min, 그리고 평균 입출구 온도차는 $8.9^{\circ}C$로 나타났다. 측정된 지중열전도도는 3.0 W/mk이며, 공내열저항은 0.104 mk/W로 나타났다. Stepwise 평가에서 지중열전도도 변화는 초기 13시간을 제외한 이후에는 표준편차가 0.16으로 매우 안정된 값으로 수렴한 것으로 나타났다. 그리고 공내열저항의 민감도를 분석한 결과 파이프의 구경과 그라우팅 물질의 열전도도가 증가함에 따라 그 값이 미미하게 감소하는 경향을 나타내었다.
지진 발생시 매립지반과 같은 연약지반에 위치하게 되는 지중매설관로는 액상화-영구지반변형에 의해 심각한 규모의 구조적인 손상이 발생할 수 있는 특징을 가지고 있다. 이 경우 매설관로의 거동특성 해석은 수치모형 및 해석적 관계식의 적용을 통해 주로 수행되는데, 특히 횡방향 지반변형을 받는 지중매설관로에 대한 해석적 관계식의 경우. 횡방향 지반변형의 폭에 따라서 해석적 관계식 자체가 이원화되는 단점을 가지고 있는 동시에 액상지반의 특징인 지반강성의 감소로 야기되는 다양한 지반변형의 형상을 반영하지 못하는 단점을 가지고 있다. 그러므로 본 연구에서는 먼저 기존의 해석적 관계식을 개략적으로 살펴본 후, 유한요소 해석과의 비교를 통해 기존의 해석적 관계식이 가지고 있는 적용적 한계성을 검토하였으며, 전체적인 매설관로의 거동을 케이블과 빔의 조합된 형태로 고려하고 지반변형의 다양한 형상을 대변하는 상호작용 형상계수를 도입함으로써 지반변형의 폭과 무관하게 적용될 수 있는 동시에 다양한 지반변형의 형상을 반영할 수 있는 개선된 형태의 해석적 관계식을 제안하였다. 제안된 해석식의 합리적 적용성과 객관적 타당성을 검증하기 위해 지반변형의 크기와 형상 변화에 따른 수치해석을 수행하고 이를 유한요소 해석결과와 비교하였으며, 지반변형의 크기 및 형상변화에 따른 매설관의 거동특성 변화 및 그 의의를 분석하였다.
하절기 줄어드는 온수부하는 태양열 집열기 과열의 주된 원인이다. 과열방지목적으로 공냉 또는 차단막이 사용되는데 이는 추가적인 기계적요소를 필요하게 되고 장기 운용 시 파손 등의 우려에 따라 그 신뢰도도 크게 저하된다. 지중열교환기는 지열을 열원으로 방열 또는 흡열을 진행하는데, 지열을 고 열원으로 하여 흡열을 목적으로 하는 연구가 대다수이며 지열원이 저열원으로 이용하는 방열에 대한 연구는 부족한 편이다. 그리하여 본 연구에서는 태양열집열판의 과열방지를 목적으로 하는 지중열교환기의 가능성 및 그 성능에 대한 연구를 진행하였다. 여름철 최대 $150^{\circ}C$이상의 고온을 유지하는 태양열집열판의 열을 방출하기 위하여 1.2m의 하부 깊이를 갖는 50m 나선형 지중열교환기를 설치하였고 이를 통해 순간 냉각이 가능한 것으로 확인되었으며, 태양열집열판의 여름철 과열에 의한 파손을 방지할 수 있었다. 그리고 다양한 변수에 대한 이론적인 계산을 통하여 0.33kg/s의 최저 순환유량만 유지해주면 지열 열교환기의 길이에 따른 방열효과에 큰 영향을 미치지 않음을 판단할 수 있다. 또한 축열조와의 공동 사용시 냉각효과는 여름철 과열시 충분한 과열방지 제어가 가능한 것으로 조사되었다.
겨울철 시설오이의 관수온도는 일반적으로 12~14$^{\circ}C$로서 토양의 깊이 약 15cm의 평균온도 14~16$^{\circ}C$보다 낮아 관수로 인하여 작물의 근권온도로 일시적으로 2~4$^{\circ}C$ 강하시키게 된다. 이러한 저온관수의 공급은 생육에 장애를 주어 생산수량과 품질에 영향을 주게된다. 따라서 근계 주변의 토양의 온도는 보통 재배작목에 따라 약간씩 차이가 있으나 대체적으로 20~22$^{\circ}C$가 적합한 것으로 알려져 있다. 본 연구는 근계가 비교적 작은 생육초기에 가온관수의 효과가 매우 높을 것으로 판단하여 무가온관수와 2$0^{\circ}C$, $25^{\circ}C$의 가온관수의 효과를 비교 분석하였다. 무가온(13$^{\circ}C$)관수를 할 경우 지온의 변화는 지중 10cm까지 약 5~7$^{\circ}C$ 낮아졌으며지중 20cm부터는 영향이 2~3$^{\circ}C$로 비교적 적었다. 2$0^{\circ}C$의 기온관수의 경우 지온변화는 지증 5cm가 관수온도와 유사한 2$0^{\circ}C$정도를 유지하였으며, 지중 10cm에서는 약 2$^{\circ}C$정도 내려갔다. $25^{\circ}C$가온관수의 경우 지온변화는 지중 5cm가 약 0.5$^{\circ}C$정도 떨어져 지온변화에 영향이 거의 없었으며, 지중 10cm 깊이에서는 약 $1.5^{\circ}C$정도 하강하였다. 무가온구에 비하여 가온구(2$0^{\circ}C$, $25^{\circ}C$)가 초장, 잎수 그리고 마디수에서 5~10% 초기생육이 우수하였으며, 2$0^{\circ}C$와 $25^{\circ}C$의 가온관수구 간의 차이는 미세하였다. 줄기와 뿌리의 생체중과 건물중의 비교하면 $25^{\circ}C$의 가온관수구가 2$0^{\circ}C$의 관수구보다 우수하였으며 무가온구에 비하면 가온관수가 (2$0^{\circ}C$, $25^{\circ}C$) 약 10~30% 정도 우수하였다. 과수와 평균과중, 생산량에서 무가온구를 기준으로 할 때 2$0^{\circ}C$ 가온구는 105%, 109%, 115%로 나타났으며, $25^{\circ}C$가온구에서는 각각 109%, 112%, 121%정도로 나타났다.
본 연구에서는 이중관 지중열교환기의 내부에 삽입되는 유로의 외벽에 설치된 핀 형상에 따른 유동 및 열전달 특성의 변화를 수치해석적으로 분석하였다. 해석에는 상용 CFD 소프트웨어인 Ansys Fluent를 이용하였으며, SST $k-{\omega}$ 난류 모델을 적용하였다. 지중열교환기의 성능을 높일 수 있는 핀의 형상을 찾기 위하여 핀의 각도($15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$), 높이비(0.1, 0.3, 0.5), 그리고 핀 간의 간격비(1, 3, 5)를 변화시키며 해석을 수행하였다. 그 결과 핀의 각도와 높이가 증가하면서 대부분의 핀 형상에서 외각유로의 외벽과 내벽에서 Nusselt 수가 증가하는 경향이 나타났다. 하지만 핀 각도 $15^{\circ}$, 높이 비 0.3 이하의 형상에서 핀이 설치되지 않은 경우보다 외벽의 열전달계수는 증가하며 내벽의 열전달 계수가 감소하는 결과를 관찰하였다. 또한 핀 간의 간격이 감소할 경우 외벽의 열전달계수는 큰 변화가 없으나 내벽의 열전달계수는 감소하는 경향이 나타났다.
국내의 지역난방을 위해 지중에 매설된 열수송관은 노후화로 인한 손상을 감지하기 위하여 지표면 온도변화에 기반한 안전관리 기준이 필요하다. 본 논문은 열수송관의 매설과 누수로 인한 지표면 온도 변화에 대하여 수치해석을 수행하였다. 열수송관이 매설된 지면과 주변지면의 온도차는 오전3시~오전8시에 가장 크게 나타났으며, 하절기 보다는 동절기에 온도차가 크게 발생하였다. 지하수위의 하강은 열수송관에 의한 지표면의 온도 증가를 크게 하고, 아스팔트 지면조건은 토사 지면조건에 비하여 지하수위 변화의 영향이 작게 나타났다. 열수송관의 누수가 없는 경우, 열수송관에 의한 지표면 온도 상승은 토사지반에서 3.0℃, 아스팔트 포장에서는 3.5℃이내로 나타났다. 토사 지면조건에서 열수송관의 누수에 의한 지면온도 변화는 하절기에는 완만하게, 동절기에는 급격하게 상승하였다. 아스팔트 포장조건은 토사 지면조건보다 누수에 의한 지표면의 온도 상승폭과 상승률이 작게 나타났다. 그리고 공급관의 양측 누수에 의하여 수송관 상부 지면과 주변지면의 온도차이가 10℃에 도달하는데 1~2일 정도 소요되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.