• Title/Summary/Keyword: 지중저장

Search Result 161, Processing Time 0.028 seconds

Experimental Study on Estimation of $CO_2$ Saturation by the Electrical Resistivity Monitoring during $CO_2$ Injection for Rock Samples ($CO_2$ 지중저장에 의한 전기비저항 모니터링 및 포화도 예측을 위한 실험 연구)

  • Kim, Jong-Wook;Song, Young-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.388-396
    • /
    • 2010
  • As a part of basic studies on monitoring and saturation estimation of carbon dioxide ($CO_2$) storage using resistivity survey, laboratory experiment has been conducted to measure the change of the electrical resistivity through repeated experiments of supercritical $CO_2$ and brine water injection into homogeneous and heterogeneous sandstones. The $CO_2$ saturation is estimated by using resistivity index based on the resistivity measurements. The experimental results of two types of sandstones show that the effect of pore structure in the rock and the effect of contained clay minerals in the rock can be affected to calculate the $CO_2$ saturation. The result can be useful to evaluate the $CO_2$ saturation based on resistivity survey at the site where $CO_2 sequestrates.

Process Design of Carbon Dioxide Storage in the Marine Geological Structure: I. Comparative Analysis of Thermodynamic Equations of State using Numerical Calculation (이산화탄소 해양지중저장 처리를 위한 공정 설계: I. 수치계산을 통한 열역학 상태방정식의 비교 분석)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.181-190
    • /
    • 2008
  • To response climate change and Kyoto protocol and to reduce greenhouse gas emissions, marine geological storage of $CO_2$ is regarded as one of the most promising option. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources(eg. power plant), to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. To design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of this paper is to compare and analyse the relevant equations of state including ideal, BWRS, PR, PRBM and SRK equation of state. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. Ideal and SRK equation of state did not predict the density behavior above $29.85^{\circ}C$, 60 bar. Especially, they showed maximum 100% error in supercritical state. BWRS equation of state did not predict the density behavior between $60{\sim}80\;bar$ and near critical temperature. On the other hand, PR and PRBM equation of state showed good predictive capability in supercritical state. Since the thermodynamic conditions of $CO_2$ reservoir sites correspond to supercritical state(above $31.1^{\circ}C$ and 73.9 bar), we conclude that it is recommended to use PR and PRBM equation of state in designing of $CO_2$ marine geological storage process.

  • PDF

Consideration of Carbon dioxide Capture and Geological Storage (CCS) as Clean Development Mechanism (CDM) Project Activities: Key Issues Related with Geological Storage and Response Strategies (이산화탄소 포집 및 지중저장(CCS) 기술의 청정개발체제(CDM)로의 수용 여부에 대한 정책적 고찰: 지중저장과 관련된 이슈 및 대응방안)

  • Huh, Cheol;Kang, Seong-Gil;Ju, Hyun-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • Carbon dioxide Capture and Storage (CCS) is one of the key players in greenhouse gas (GHG) reduction portfolio for mitigating climate change. CCS makes simultaneously it possible not only to reduce a huge amount of carbon dioxide directly from the emission sources (e.g., coal power plant) but also to maintain the carbon concentrated-energy and/or industry infrastructure. Internationally, the United Nations Framework Convention on Climate Change (UNFCCC) is dealing the agenda for considering the possibility of including CCS project as one of Clean Development Mechanism (CDM) projects. Despite its usefulness, however, there are the controversies in including CCS as the CDM project, whose issues include i) non-permanence, including long-term permanence, ii) measuring, reporting and verification (MRV), iii) environmental impacts, iv) project activity boundaries, v) international law, vi) liability, vii) the potential for perverse outcomes, viii) safety, and ix) insurance coverage and compensation for damages caused due to seepage or leakage. In this paper, those issues in considering CCS as CDM are summarized and analyzed in order to suggest some considerations to policy makers in realizing the CCS project in Korea in the future.

Numerical Analysis of Flow Characteristics in an Injection Tubing during Supercritical CO2 Injection: Application of Demonstration-scale CO2 Storage Project in the Pohang Basin, Korea (초임계 상태의 CO2 주입시 주입관내 유동 특성의 수치해석적 연구: 포항분지 중소규모 CO2 지중저장 실증 사업에 적용)

  • Jung, Woodong;Sung, Wonmo;Han, Jeongmin;Song, Youngsoo;Wang, Jihoon
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.9-17
    • /
    • 2022
  • This paper is the continuation of our previous paper, which we refer to as numerical analysis of phase behavior and flow properties in an injection tubing during gas phase CO2 injection. Our study in this paper show the results during supercritcal CO2 injection under the same project. Geological CO2 storage technology is one of the most effective method to decrease climate change due to high injectivity and storage capacity and economics. A demonstration-scale CO2 storage project was performed in a deep aquifer in the Pohang basin, Korea for a technological development in a large-scale CO2 storage project. A problem to consider in the early stage design of the project was to analyze CO2 phase change and flow characteristics during CO2 injection. To solve this problem, injection conditions were decided by calculating injection rate, pressure, temperature, and thermodynamic properties. For this research, we simulated and numerically analyzed CO2 phase change from liquid to supercritical phase and flow characteristics in injection tubing using OLGA program. Our results provide discharge pressure and temperature conditions of CO2 injection combined with a pressure of an aquifer.

Development of Hydro-Mechanical Coupling Method for CO2 Sequestration and Its Application to Sleipner Project (이산화탄소 지중저장을 위한 수리-역학 연동 해석 기술 개발 및 적용 - 슬라이프너 프로젝트)

  • Kwon, Sangki;Lee, Hyeji
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.146-160
    • /
    • 2017
  • $CO_2$ sequestration for alleviating global warming is a hot issue in the world. In this study, TOUGH2 and FLAC3D were combined for analyzing the hyro-mechanical coupling behaviors expected in $CO_2$ sequestration and applied it to Sleipner project carried out in Norway. In the analysis, the influence of pore pressure on in situ stress was considered and the influence of caprock permeability on hydro-mechanical behaviors was analyzed. In the condition of constant injection rate, pressure and saturation at the injection well, liquid and gas saturation in rock, major and minor stress variations with time and distance from the injection well, and horizontal and vertical displacements after injection could be investigated. The major principal stress was quickly increased in the early stage and then slowly decreased to a stable value, which was higher than the initial value. In contrast, the minor principal stress returned to initial value after some increase in the early stage. Surface upheaval was steadily increased and it was up to 15mm in 2 years after injection. When the caprock's permeability was changed from $3e-15m^2{\sim}3e-18m^2$, it was found that the injection well pressure and surface upheaval were inversely propotional to the permeability.

Geological analysis of the CarbonNet CCS project in the Gippsland Basin, Australia (호주 깁스랜드 분지 CarbonNet CCS 프로젝트의 지질학적 분석)

  • Hyun-Wook Jo;Ju-Won Oh;Young-Ju Lee;Ah-Reum Han;Jae-Young Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.157-170
    • /
    • 2023
  • In South Korea, carbon capture and storage (CCS) techniques have attracted considerable attention as part of efforts to achieve the 2030 Korean Nationally Determined Contribution. However, owing to delays in large-scale CCS projects in South Korea, interest in cross-border CCS projects, wherein CO2 captured in South Korea is stored in overseas CCS facilities, has increased. In this study, we investigated the development status of the CarbonNet project in the Gippsland Basin, Australia. First, we provide a brief overview of sedimentary basins and CCS projects in Australia. Subsequently, we review the geological history of the Gippsland Basin, the site of the large-scale CCS project. Finally, we summarize the site selection process for the CarbonNet project and discuss the suitability of the Pelican site for large-scale CCS projects.

Design of Circuit for Underground Power Cable Fault Location (지중송전선 고장점 탐색을 위한 측정 회로 설계)

  • Lee, Jae-Duck;Lee, Hee-Suk;Jung, Dong-Hak;Choi, Sang-Bong;Nam, Kee-Young;Jeong, Seong-Hwan;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.119-121
    • /
    • 2005
  • 전력케이블, 특히 지중 송전케이블은 사고발생시 그 파급효과가 크기 때문에 빠르고 정확한 고장점의 탐지가 필요하다. 본 논문에서는 지중 케이블의 고장 위치를 파악하기 위해 필요한 신호를 계측하고 이를 빠른 시간 내에 저장하여 사고 발생 후 이를 분석하여 고장점을 찾을 수 있도록 하는 고장점 탐지 장치를 위한 회로 설계에 대하여 언급한다. 케이블의 고장점 탐색 기술 개발을 위해서는 고장시에 발생하는 과도현상을 기록할 수 있도록 회로를 설계해야 하는 바 센서 구성과 입력 회로반의 설계, 데이터 저장 및 분석을 위한 회로의 설계는 고장점 탐색 장치 개발에 있어 필수적인 기술이다. 개발된 지중 송전선 고장점 탐색을 위한 측정회로는 사고지점 계산을 위해 필요한 신호측정에 효과적이며 실제 전력 공급 계통에 손쉽게 설치할 수 있는 장점을 가지고 있다. 이하에 지중송전선 고장점 탐색을 위한 측정 회로 설계에 관하여 언급한다.

  • PDF

A Preliminary Evaluation on CO2 Storage Capacity of the Southwestern Part of Ulleung Basin, Offshore, East Sea (동해 울릉분지 남서 주변부의 이산화탄소 저장 용량 예비 평가)

  • Kim, Yu-Lee;Lee, Keum-Suk;Jo, So-Hyun;Kim, Min-Jun;Kim, Jong-Soo;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.41-48
    • /
    • 2012
  • A theoretical $CO_2$ storage capacity is estimated on the southwestern continental shelf margin of Ulleung Basin, offshore Korea using 2D/3D multi-channel seismic and wellbore data acquired in the area over the two decades since the late 1980s. For the first time in Korea, the present study applies an efficiency factor to the capacity calculation, together with the other required parameters. For possible $CO_2$ storage volume estimation of the study area, we interpreted the seismic data in the Gorae area from 800 m to 3,000 m below the seafloor integrated with the well data, and identified five different seismic units; the limited depth interval is considered because of fluid state of $CO_2$ and tightness of the formation. The total volumes of each seismic unit were converted with a time-depth relation inferred from the checkshot surveys before the other required parameters including porosity and density were applied to compute the potential storage capacity. The accumulated possible storage volume from the five depositional units in the study area is estimated to be approximately 5,100 Mton ($P_{50}$). The approaches made in this study will be applied to the rest area of the basin and other continental shelves (i.e., Yellow Sea and northern part of East China Sea) in the next phase.

Effect of Cyclic Injection on Migration and Trapping of Immiscible Fluids in Porous Media (공극 구조 내 교차 주입이 비혼성 유체의 포획 및 거동에 미치는 영향)

  • Ahn, Hyejin;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.37-48
    • /
    • 2019
  • In geological $CO_2$ sequestration, the behavior of $CO_2$ within a reservoir can be characterized as two-phase flow in a porous media. For two phase flow, these processes include drainage, when a wetting fluid is displaced by a non-wetting fluid and imbibition, when a non-wetting fluid is displaced by a wetting fluid. In $CO_2$ sequestration, an understanding of drainage and imbibition processes and the resulting NW phase residual trapping are of critical importance to evaluate the impacts and efficiencies of these displacement process. This study aimed to observe migration and residual trapping of immiscible fluids in porous media via cyclic injection of drainage-imbibition. For this purpose, cyclic injection experiments by applying n-hexane and deionized water used as proxy fluid of $scCO_2$ and pore water were conducted in the two dimensional micromodel. The images from experiment were used to estimate the saturation and observed distribution of n-hexane and deionized water over the course drainage-imbibition cycles. Experimental results showed that n-hexane and deionized water are trapped by wettability, capillarity, dead end zone, entrapment and bypassing during $1^{st}$ drainage-imbibition cycle. Also, as cyclic injection proceeds, the flow path is simplified around the main flow path in the micromodel, and the saturation of injection fluid converges to remain constant. Experimental observation results can be used to predict the migration and distribution of $CO_2$ and pore water by reservoir environmental conditions and drainage-imbibition cycles.

Design and Construction Study of an Injection Facility for CO2 Offshore Storage (CO2 해상 지중저장을 위한 주입설비 설계 및 구축 연구)

  • Moon, Hung-Man;Kim, Hyo-Joon;Shin, Se-Jin;Lee, Yong-Il;Kwon, Si-Hyun;Kwon, Yi-Kyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • Almost all countries of the world have recently made great efforts to reduce green-house gases to alleviate the global warming threatening human survival, because a huge amount of carbon dioxide as one of the main green-house gases has been emitted from the combustion processes of fossil fuels such as coal and oil. $CO_2$ capture and storage (CCS) technology is a representative method to diminish the green-house gases, and actively investigated by many countries. This study focuses on the design and construction of a high pressure $CO_2$ injection facility to store it to underground, which is the first $CO_2$ injection in Korea following the steps of the $CO_2$ capture from large $CO_2$ emission sources and transportation to the sea. Injection tests of $CO_2$ on the platform on the sea were carried out in Yeongil Bay of Pohang city in the early 2017. Thus, we were able to perceive the necessary operating conditions of the injection facility, injection characteristic, and knowhow of the injection facility. The results obtained from the injection test shall be utilized for facility upgrades and scale-ups.