• Title/Summary/Keyword: 지중온도

Search Result 257, Processing Time 0.028 seconds

Effects of Sowing Method and Summer Management on Stubbli Carbohydrate Reserves and Microclimate of Orchargrass Meadow (파종방법 및 여름철 관리가 Orchargrass채초지의 그루터기 저장탄수화물 함량 및 미기상에 미치는 영향)

  • 권찬호;김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 1992
  • This experiment was designed to gain information on factors affecting stubble death of orchardgrass (Dactylis glomerata L.) during the first rainy season. According to the experimental plan, the effects of sowing methods, drainages and cutting dates on the stubble carbohydrate content of orchardgrass, available soil moisture content of experimental plots, temperatures at the ground level and in the soil, and relative light intensity and humidity at the base of orchardgrass canopy were measured during the rainy season. The carbohydrate content of orchardgrass was sharply decreased to 2.9 % at 3rd day after cutting in the plots cut before rainy season and a gradural recovery was noted following the sharp reduction, but in the plots cut after rainy season, orchardgrass showed 5.5% of carbohydrate content before cutting and 3.0% at the 3rd day after cutting. The same pattern in both carbohydrate reduction and recovery was found between two cutting treatments. The available soil moisture content in the plots cut before rainy season was slightly higher than that in the plots cut after rainy season. But after the rainy season, the available soil moisture content in the plots cut after rainy season was higher than that in the plots cut before rainy season. Soil temperature at lOcm depths in the plots cut before rainy season was higher than that in the plots cut after rainy season. Daily maximum air temperature at the ground level in the plots cut before rainy season was higher than that in the plots cut after rainy season and changeable. Relative humidity at the ground level was below 70% in the plots cut before rainy season, but 75 to 90 % was observed in the plots cut after rainy season. Relative light intensity at the ground level in the plots cut before rainy season was much higher, recorded 50 to 90 %, than that in the plots cut after rainy season showing less than 10%. The results of this study suggest that the stubble death of orchardgrass during the rainy season is due to plant diseases influenced by a decrease of light penetration and increase of relative humidity at the base of the grass canopy.

  • PDF

Empirical Study of Key Factors in Satisfaction with Subway Services (지하철 이용만족도 결정요인에 관한 실증적 연구 -서울지역을 중심으로-)

  • Shim, Jong-Seop;Jeon, Ki-Heung
    • Korean Business Review
    • /
    • v.13
    • /
    • pp.49-66
    • /
    • 2000
  • Despite the fact that understanding customers satisfaction with transportation services is a subject of great importance, authors, so far, found no systematic researches referred to that issue. From this point, studying the satisfaction with subways services can be extremely useful. Empirical study of key factors in the satisfaction with subway services is the departure point, which holds as objectives, and we believe, will contribute to overall increasing in the number of subways services used and in the amount of public benefits derived from that usage. In order to achieve these goals: First, several items referred to some key factors in the satisfaction of subway usage were systemized. Second, a research of specific weights attached to those key factors by subway passengers was conducted. Knowledge of the satisfaction variables system can provide deep insights into ones perceptual experience when using a subway. The results were as follows: Various interrelated factors compose a passengers satisfaction with subway services. People do not just use subway passively; a number of key factors, like physical and personal services, exact timing, easiness to access etc. determine the passengers satisfaction with subway. In order to find out specific weights of these key factors multiple regression analysis was employed. Results showed that satisfaction with subway is determined by (in order of importance) easiness to access, quality of physical services, friendliness of working stuff and timing exactness. According to the findings, passengers do not use subway as a simple mean of transportation, rather they perceive it as a complex combination of environmental elements and overall satisfaction depends on these various factors. Therefore, to learn passengers satisfaction with subways services, passengers subway experience must be thoroughly studied and analyzed, and this is where papers value resides.

  • PDF

Time-Lapse Electrical Resistivity Structures for the Active Layer of Permafrost Terrain at the King Sejong Station: Correlation Interpretation with Vegetation and Meteorological Data (세종과학기지 주변 영구동토의 활동층에 대한 시간경과 전기비저항자료의 해석: 기상 및 식생 자료와의 연계해석)

  • Kim, Kwansoo;Lee, Joohan;Lee, Eungsang;Ju, Hyeontae;Hyun, Chang-Uk;Park, Sang-Jong;Kim, Ok-Sun;Lee, Sun-Joong;Kim, Ji-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.413-423
    • /
    • 2020
  • Over the wide area, King Sejong Station and the nearby land are uncovered with snow and ice conditions. Therefore, the active layer on the permafrost has been formed to be much thicker than the other Antarctica region. Electrical resistivity survey of Wenner and dipole-dipole arrays was undertaken at a series of time in the freezing season at the King Sejong Station to delineate subsurface structure and to monitor active layer in permafrost terrain. Time-lapse resistivity structures are well in terms of the vegetation distribution, ground surface temperature, and snow depth. Horizontal high resistivity belt(>1826 Ωm) at very shallow depth is thickening with the lapse of time, probably caused by the freezing of the water in the pore spaces with decrease of ground temperature. Subsurface structures for the area of low snow-cover and vegetated zone area are comprised of 0~0.5 m deep high-resistive gravel-rich soil, 0.5~3 m deep low-resistive active layer, and the underlying permafrost. In contrast, the unvegetated area and high snow-buildup is characterized with high resistivities larger than approximately 2000 Ωm due to freezing of the soil throughout the year. Data interpretation and correlation schemes explored in this paper can be applied to confirm the active layer, which is expected to get thinner in additional survey during the thawing season.

Effect of Soil Strength on Seedling Emergence of Rice and Barnyardgrasses in Direct Dry-Seeding (건답직파에서 토양경도가 벼와 피의 출아에 미치는 영향)

  • Kwon, Yong-Woong;Lee, Byun-Woo;Kim, Do-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.489-495
    • /
    • 1996
  • Seedling emergences of four rice varieties (Dongjinbyeo, Dadajo, Galsaekggarak-sharebyeo, and Italiconaverneco) and three barnyardgrass species(Echjnochloa oryzjcola, E. crus-gali var. crus gali E. crus-gali var. praticola) were evaluated in relation to soil strength. Soil strength was varied by compressing the entire volume of soil with a hydraulic jack so as to be 0.5, 1, 2, 3, 6kg /$\textrm{cm}^2$. Soil strength was measured with a penetrometer (Yamanaka type) and soil covering above the seed was 4cm deep. Experiments were conducted at two air temperature conditions of 17 and $25^{\circ}C$. At a soil strength of up to 2kg/$\textrm{cm}^2$, little or no decrease in seedling emergence occurred in all rice varieties and barnyardgrasses tested. Above that value, seedling emergence decreased progressively as the soil strength increased. The degree of decrease was greatest in Dongjinbyeo and smallest in Dadajo among tested rice varieties, and greatest in Echinochloa oryzicola among barnyardgrasses, being greater in barnyardgrasses than rice. Seedling emergence was delayed almost linearly as the soil strength increased. The delay was greatest in Dongjinbyeo among rice varieties and in Echinochloa oryzicola among barnyardgrasses. Mesocotyl length increased as soil strength increased up to 2 to 3kg / $\textrm{cm}^2$ in Dongjinbyeo and Dadajo in 17$^{\circ}C$ and $25^{\circ}C$, and up to 6kg/$\textrm{cm}^2$ in Galsaekggaraksharebyeo and Italiconaverneco in $25^{\circ}C$. Dongjinbyeo showed the least elongation of mesocotyl among rice varieties in any soil strength. The total length of mesotyl, first internode and incomplete leaf showed little variation with soil strength. The total length was longer than the 4cm covering depth in other varieties except Dongjinbyeo. This might have caused the lower emergence rate in Dongjinbyeo than other varieties in higher soil strength.

  • PDF

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

Supercritical Fluid Extraction of Volatile Components from Strawberry (딸기의 휘발성 향기성분의 초임계 유체 추출)

  • Lee, Hae-Chang;Seo, Hye-Young;Shin, Dong-Bin;Park, Yong-Kon;Kim, Yoon-Sook;Ji, Joong-Ryong;Choi, Hee-Don
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.615-621
    • /
    • 2009
  • In order to optimize the supercritical fluid extraction (SFE) conditions of volatile components from the strawberry, we conducted an evaluation of the sample preparation and SFE operating conditions. The analysis of the volatile components extracted by a variety of sample preparation protocols led to the identification of 30, 26, 30, and 34 volatile components in fresh, freeze-dried, 30% celite and 70% celite treatments, respectively. The 70% celite treatment was the most effective in extracting the volatile components from strawberry via SFE. Analysis of the volatile components extracted by a variety of SFE operating conditions yielded identifications of 34, 35, 34, and 35 volatile components at 3,000 psi (40, $50^{\circ}C$) and 6,000 psi (40, $50^{\circ}C$), respectively. The extraction yield of alcohols and acids, and the total volatile component contents, were highest under conditions of 3,000 psi and $55^{\circ}C$. Volatile components from the strawberry were extracted via SFE, simultaneous steam distillation and extraction (SDE), and solvent extraction (SE). The analysis of the volatile components extracted via different extraction methods resulted in the identification of 56, 34, and 32 volatile components in the SDE, SFE, and SE extracts, respectively. The total volatile component contents identified in the SDE, SFE, and SE extracts were $20.268{\pm}1.144$, $21.627{\pm}1.215$ and $2.476{\pm}0.177\;mg/kg$, respectively. The SFE extract evidenced higher contents of sweet flavors such as 2-methylbutanoic acid, 2-methylpropanoic acid, and hexanoic acid than the SDE and SE extracts. SFE proved to be the most appropriate method for the extraction of fresh volatile components from the strawberry.

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.

Effect of Environmental Conditions on Germination and Emergence of Red Rice (Sare : Oryza sativa L.) (환경조건(環境條件)이 적미(赤米)(사레 : Oryza sativa L.)의 발아(發芽) 및 출아(出芽)에 미치는 영향(影響))

  • Ree, D.W.;Hong, Y.K.;Kim, J.C.;Kim, Y.H.;Song, Y.S.;Kim, H.D.
    • Korean Journal of Weed Science
    • /
    • v.4 no.2
    • /
    • pp.143-148
    • /
    • 1984
  • Experiments were carried out to study the germination and emergence of the red rice(sare) as a weed, Mong-geun sare, Sal sare, Ginkarag sare, Galsaegsal sare, Galsaegkarag sare. The germination and emergence of red rice were not greatly affected by soil salinification, soil pH and air temperature. Especially, in deep molding volume, emergence of red rice was greater than rice cultivar. It was considered to be due to the vitality of the mesocotyl. Submergence was expected to be a better way to control the red rice because germination rate of red rice was low under submergence.

  • PDF

Two Way Set Temperature Control Impact Study on Ground Coupled Heat Pump System Energy Saving (양방향 설정온도 제어에 따른 지중연계 히트펌프 시스템의 에너지 절감량 평가 연구)

  • Kang, Eun-Chul;Lee, Euy-Joon;Min, Kyong-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • Government has recently restricted heating and cooling set temperatures for the commercial and public buildings due to increasing national energy consumption. The goal of this paper is to visualize a future two way indoor set temperature control impact on building energy consumption by using TRNSYS simulation modeling. The building was modelled based on the twin test cell with the same dimension. Air source ground coupled heat pump performance data has been used for modeling by TRNSYS 17. Daejeon weather data has been used from Korea Solar Energy Society. The heating set temperature in the reference room is $24^{\circ}C$ as well as the target room set temperature are $23^{\circ}C$, $22^{\circ}C$, $21^{\circ}C$ and $20^{\circ}C$. The cooling set temperature of the reference room is also $24^{\circ}C$ as well as the target room set temperature of $25^{\circ}C$, $26^{\circ}C$, $27^{\circ}C$ and $28^{\circ}C$. For the air source heat pump system, heating season energy consumption is $35.52kWh/m^2y$ in the reference room. But the heating energy consumption in the target room is reduced to 7.5% whenever the set temperature decreased every $1^{\circ}C$. The cooling energy consumption in the reference room is $4.57kWh/m^2y$. On the other hand, the energy consumption in the target room is reduced to 22% whenever the set temperature increased every $1^{\circ}C$ by two way controller. For the geothermal heat pump system, heating energy consumption in the reference room is reduced to 20.7%. The target room heating energy consumption is reduced to 32.6% when the set temperature is $22^{\circ}C$. The energy consumption in the target room is reduced to 59.5% when the set temperature is $26^{\circ}C$.

Design of Submarine Cable for Capacity Extension of Power Line (전력선 용량증대를 위한 해저케이블 설계)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Dong-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • A submarine power cable is a transmission cable for carrying electric power below the surface of the water. Recently, submarine cables transfer power from offshore renewable energy schemes to shore, e.g. wind, wave and tidal systems, and these cables are either buried in the seabed or lie on the ocean floor, depending on their location. Since these power cables are used in the extreme environments, they are made to withstand in harsh conditions and temperatures, and strong currents. However, undersea conditions are severe enough to cause all sorts of damage to offshore cables, these conditions result in cable faults that disrupt power transmission. In this paper, we explore the design criteria for such cables and the procedures and challenges of installation, and cable transfer splicing system. The specification of submarine cable designed with 3 circuits of 154kV which is composed of the existing single circuit and new double circuits, and power capacity of 100MVA per cable line. The determination of new submarine cable burial depth and cable arrangement method with both existing and new cables are studied. We have calculated the permission values of cable power capacity for underground route, the values show the over 100MW per cable line.