• Title/Summary/Keyword: 지오텍스타일 튜브

Search Result 20, Processing Time 0.033 seconds

Hydraulic Stability and Wave Transmit Property of Stacked Geotextile Tube by Hydraulic Model Test (수리모형시험을 통한 다단식 지오텍스타일 튜브의 안정성 및 파랑 전달특성에 관한 연구)

  • Oh Young In;Shin Eun Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2005
  • Geotextile have been used for the past 30 years for various types of containers, such as small sandbag, 3-D fabric forms and aggregate filled gabion etc. While they are mainly used for flood and water control, they are also used against beach erosion fir shore protection. Especially, large-sized geotextile tube structures are used in various innovative coastal systems involving breakwaters. This paper presents the hydrodynamic behavior of geotextile tubes based on the results of hydraulic model tests. These tube are generally about 1.0 m to 2.0 m in diameter, thou띤 they can be sized for any application. The tubes can be used solely, or stacked to add greater height and usability. Stacked geotextile tubes will be created by adding the height necessary for some breakwaters and embankment, therefore increasing the usability of geotextile tubes. The hydraulic model test was conducted as structural condition and wave conditions. Structural condition is installation direction to the wave (perpendicular and 45$^{circ}$$), and wave condition is varied with the significant wave height ranging from 3.0 m to 6.0 m. Compared with previous test result, the stacked geotextile tube is more stable against wave attack than single tube. Also, the case of none-water depth above crest is more stable than 0.5H of water depth above crest. The incline installed stacked tube is more effective for wave adsorption.

Dewatering of dredged sludge using geotextile tube (지오텍스타일 튜브를 활용한 준설오니 탈수처리에 관한 연구)

  • Shin, Eun-Chu;Jang, Woo-Lam;Kim, Sung-Hwan;Oh, Young-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Recently, dewatering process method of high water content materials that utilize geotextile has many applications in variety fields. It is method of dewatering to solid step through self-weight consolidation process after pour sludge using filtering efficiency and dewatering efficiency. Analyzed application of domestic manufactured geotextile tube that can examine physical characteristics of geotextile tube and filling soil and achieve filtering efficiency and dewatering efficiency. Based on the various laboratory and field test results mixing proportions of water and soil is about 6:4 at least. Polypropylene geotextile is more effective for drainage and dewatering function of geotextile tube application.

  • PDF

A Study of Dewatering and Filtration on Woven Geotextile Tube (직포 지오텍스타일 튜브의 여과와 탈수에 대한 연구)

  • Kim, Tae-Hyung;Jung, Soo-Jung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.31-37
    • /
    • 2006
  • The purposes of this paper are to study the use possibility of geotextile tubes for dewatering of high water content sludges and sediments and to evaluate affecting factors on dewatering. To do this, pressure filtration tests are conducted on four high water content materials with two geotextiles under two filtration pressures. Based on the test results, although woven geotextile tubes are not satisfied the soil retention criteria used in filter design commonly, a great portion of fines are retained by filter cake formation on geotextile tube's upstream side, but also after formation of filter cake, the permeability drops sharply. Higher filtration pressure tends to increase dewatering rate, but has very little effect on filtration efficiency. Dewatering capacity is affected by several factors which are related to the geotextile, but the property of sludge appears to be the dominant control factor for dewatering efficiency.

  • PDF

A Study on Stress-Strain Behaviour of Geotube Structure Filled with Silty Sand Under Low Confining Pressure by Triaxial Compression Test (실트질 모래가 충진된 지오튜브 구조체의 저 등방조건에서 삼축압축시험에 의한 응력-변위 거동 연구)

  • Hyeong-Joo, Kim;Tae-Woong, Park;Ki-Hong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.69-78
    • /
    • 2022
  • Geotextile tubes are widely used to prevent erosion in coastal areas and to replace the backfill for shore slopes in the reclamation of land using dredged soil. In this study, The triaxial confining pressures were chosen as 10kPa, 50kPa, or 100kPa for the specimens reinforced with geotextile considering the condition in the site. The strain behavior under various compressive stresses was then identified. At strains 0% to 7%, the stress-strain behavior was the same due to the effect of initial strain hardening, in which the force was exerted according to the relaxation of the geotextile regardless of the confining pressure (≤100kPa). At strains of 7% or more, the specimen with the small confining pressure had smaller deformation under load, which increases the tensile resistance provided by the reinforcing geotextile. Brittle fracture was then observed due to strain softening and the deviator stress abruptly decreased. This is different from the phenomenon in which the shear strength increases as the confining pressure increases in general triaxial compression tests. In the geoxtile-confined tests, geotextiles are primarily subjected to tensile displacement. Thereafter, the modulus of elasticity increases rapidly, which exhibits the elastic behavior of the geotextile.

Hydrodynamic Behavior Analysis of Stacked Geotextile Tube by Hydraulic Model Tests (수리모형시험을 통한 다단식 지오텍스타일 튜브의 수리동역학적 거동분석)

  • 신은철;오영인;김성윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.705-712
    • /
    • 2002
  • Geotextile tube is environmentally sustainable technology and has been applied in hydraulic and coastal engineering applications. Geotextile tube is composed in permeable fabrics and Inside dredged materials, and hydraulically or mechanically filled with dredged materials. These tube are generally about 1.0m to 2.0m in diameter, through they can be sized for any application. The tubes can be used solely, or stacked to add greater height and usability. Stacked geotextile tubes will create by adding the height necessary for some breakwaters and embankment, therefore increasing the usability of geotextile tubes. This paper presents the hydrodynamic behavior of stacked geotextile tube by hydraulic model tests. The hydraulic model test conducted by structural condition and wave conditions. Structural condition is installation direction to the wave(perpendicular band 45$^{\circ}$), and wave condition is varied with the significant wave height ranging from 3.0m to 6.0m. Based on the test results, the hydrodynamic behaviors such as structural stability, wave control capacity, and strain are interpreted.

  • PDF

Construction Monitoring of Geotextile Tube at Young-Jin Bay and Stability Analysis by Hydraulic Model Tests (영진만 지오텍스타일 튜브의 현장 시공계측 및 수리모형시험을 통한 안정성분석)

  • 신은철;오영인;이명호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.549-556
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). It can also be used to isolate contaminated material from harbor, detention basin dredging, and to use this unit as dikes for reclamation work. Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. The stability analysis of geotextile tube is composed geotechnical and hydrodynamic analysis. The stability check points are sliding failure, overturning, bearing capacity failure against the wave attack. In this paper presented the construction procedure and in-situ measurement(properties of filling material, effective height variation, stress variation at geotextile tube bottom) of geotextile tube at Young-Jin Bay and stability analysis by theoretical method and hydraulic model tests

  • PDF

Behavior of Geotextile Tube by Numerical Analysis (수치해석기법을 이용한 지오텍스타일 튜브의 거동분석)

  • 신은철;오영인;조인휘
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.385-392
    • /
    • 2003
  • Traditional forms of river and coastal structures have become very expensive to build and maintain, because of the shortage of natural rock. Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. In this study, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of geotextile and hydraulic pumping conditions. Numerical analysis was executed to compare with the results from the large-scale field model tests, and also compared the results of 2-D plane strain analysis and 3-D FEM analysis. A geotextile tube was modeled using the commercial finite element analysis program ABAQUS and the one-quarter of tube was modeled. Behavior of geotextile tube during the hydraulic pumping procedure was analyzed by comparing the large-scale field model test and numerical analysis. The shape variation and maximum tube height between the numerical analysis results and large-scale filed test results are turned out to be a good agreement.

  • PDF

Case History of Sea Dyke Filter Construction Using Geotextile Tube Mattress (튜브형 매트리스를 활용한 방조제 필터공 축조사례연구)

  • Oh, Young-In;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2007
  • Geotextile is one of the most useful and effective polymer material in civil construction works and the main function of geotextile is separation, reinforcement, filtering and drainage. Recently, because of the shortage of natural rock, traditional forms of river and coastal structures have become very expensive to build and maintain. Therefore, the materials used in hydraulic and coastal structures are changing from the traditional rubble and concrete systems to the cheaper materials and systems. One of these alternatives employs geotextile tube technology in the construction of coastal and shore protection structures, such as embankment, see dyke, groins, jetties, detached breakwaters and so on. Geotextile tube technology has changed from being an alternative construction technique and, in fact, has advanced to become the most effective solution of choice. This paper presents case history of sea dyke filter construction using geotextile tube mattress and also, various issues related to the tube mattress design and construction technology.

  • PDF

Behavior Analysis of the Saemangum Waterproof Embankment Applying Geotextile Tube Method and Example of Field Test - In Concentration of Reviewing the Construction and Design Process - (지오텍스타일 튜브공법을 적용한 새만금방수제의 거동분석 및 시험시공 사례 - 설계과정 및 시공성 검토 중심으로 -)

  • Park, Jong Gun;Ko, Jeong Hee;Park, Tae Seup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.155-165
    • /
    • 2013
  • Recently, geotextile tube method can be widely applied to the river, costal and marine in the construction field, such as embankment, groin, breakwater, dyke structures and so on, in advanced countries of the world. And that has been constructed at the temporary road for incheon, ilsan-bridge construction and coast erosion protection in republic of korea. Geotextile tube is a tube shaped geotextile product and hydraulic pumping filled with dredged soils. In this paper, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of material character, shape condition, construction pressure and so on. Also, the field test was conducted in order to identify the construction ability of Samangum waterproof embankment using geotextile tube. According to the applied of field test, geotextile tube was 65 m long and 4.0 m diameter. Also, the permeability coefficient and ultimate tensile strength of geotextile tube is $1.6{\times}10^{-1}$ cm/sec and 205.26 kN/m, respectively. As a result of filed test, when filled, geotextile tube does not attain the same as its unfilled theoretical diameter, but may reach approximately of 55 percent of the theoretical diameter. At the time, geotextile tubes were 12.56 m in circumference and filled to a height of about 2.2 m. This paper presents case study on field application and behavior analysis of the saemangum waterproof embankment donggin 1 division construction using geotextile tube.