• Title/Summary/Keyword: 지열원 히트펌프

Search Result 74, Processing Time 0.031 seconds

Economic Feasibility of Various HVAC Systems for Commercial Building and Comparison of Energy Tariffs between Korea and USA (업무시설용 건물 적용 복합 지열원 공조시스템의 경제성 평가 및 한미 요금 비교)

  • Koh, Jae-Yoon;Park, Yool;Seo, Dong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.599-607
    • /
    • 2008
  • In this study, air conditioning systems include ground source heat pump (GSHP), are evaluated for economic feasibility. The building is modeled an air conditioned for 280kW scale. This analysis is compared with the energy tariff programs of Korea and USA. The objectives of this paper are to evaluate the cost-effectiveness of the GSHP and combined system using Life-Cycle Cost (LCC) analysis, and to carry out the sensitivity analysis of key parameters. The paper considered the cases including the base case of air source heat pump and the other two alternates for comparisons. The combined system is not only a cost-effective way to the low energy consumption but also a way to avoid a high initial investment. The variations of initial investment and energy rates give a significant effect on the total LCC and payback period.

A Study on the Operating Performance of a Cascade Heat Pump (캐스케이드 열펌프시스템의 운전 특성에 관한 연구)

  • Chang, Ki-Chang;Baik, Young-Jin;Ra, Ho-Sang;Kim, Ji-Young;Lee, Jea-Hun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • The purpose of this study is to investigate the performance of a water heat source cascade heat pump system R717(Ammonia) is used for a low-stage working fluid while R134a is for a high-stage. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. In this study, two experiments were carried out. One is a system starting test from the low load temperature of $10^{\circ}C$. The other is a system performance investigation over the R717 compressor capacity changes. Experimental results show that when it starts from the low load temperature, the suction temperature of the low-stage compressor is higher than that of a high-stage. The system performance increases when a water source temperature or a low-stage compressor rotational frequency goes higher.

  • PDF

Application study of heat storage type GSHP system in Apartment building with central cooling and heating facilities using life cycle cost analysis (LCC 분석을 이용한 중앙공급식 공동주택의 수축열식 지열원 히트펌프시스템의 적용연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Cho, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1497-1502
    • /
    • 2009
  • The present study has been conducted economic analysis of heat storage type ground source heat pump system(HSGSHP) and normal ground source heat pump (GSHP) and central boiler system with individual air conditioning facility which are installed at the same building in the shared an apartment house. Cost items, such as initial construction cost, annual energy cost and maintenance cost of each system are considered to analyze life cycle cost (LCC) and simple payback period (SPP) with initial cost different are compared. The initial cost is a rule to the Government basic unit cost of production. LCC applied present value method is used to assess economical profit of both of them. Variables used to LCC analysis are prices escalation rate and interest rate mean values of during latest 10 years. The LCC result shows that HSGSHP (1,351,000,000won) is more profitable than central boiler system with individual air conditioning facility by 86.7% initial cost. And SPP appeared 8.0 year overcome the different initial cost by different annual energy cost.

  • PDF

Application analysis to a shared apartment house of heat storage type GSHP system with dual storage tank (이중 축열조를 갖는 축열식 지열원 히트펌프시스템의 노인공동주택 적용 분석연구)

  • Park, Jong-Woo;Lee, Sang-Hoon;Cho, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.27-32
    • /
    • 2008
  • The present study has been conducted economic analysis of heat storage type ground source heat pump system(HSGSHP) and normal ground source heat pump (GSHP) which are installed at the same building in the shared an apartment house. Cost items, such as initial cost, annual energy cost and maintenance cost of each system are considered to analyze life cycle cost (LCC) and simple payback period (SPP) with initial cost different are compared. The initial cost is a rule to the Government basic unit cost of production. LCC applied present value method is used to assess economical profit of both of them. Variables used to LCC analysis are prices escalation rate and interest rate mean values of during latest 10 years. The LCC result shows that HSGSHP (1,050,910,000won) is more profitable than GSHP by 68.9% initial cost. And SPP appeared 3.0 year overcome the different initial cost by different annual energy cost.

  • PDF

Performance Evaluation and Economic Estimation of Ground Source Heat Pump Cooling and Heating System (지열 냉난방 시스템의 성능 및 경제성 평가)

  • Lim Hyo Jae;Song Yoon Seok;Kong Hyoung Jin;Park Seong Koo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.296-300
    • /
    • 2004
  • Performance evaluation and economic estimation were conducted on the water to water GSHP (Ground Source Heat Pump) installed in existing building. Ground heat exchanger was a closed vertical loop type and sized to be 5 boreholes and 100m depth per borehole. Operation efficiency of the system shows that, COP increased from 3.0 to 4.2 with entering water temperature in heating operation, however, COP decreased from 5.0 to 3.7 in cooling operation. Economic estimation was analyzed by LCC (Life Cycle Cost) method and it showed that GSHP could save 68% of cost compare to the conventional oil source. Thus, despite of the large amount of initial cost, GSHP has a economic advantage to the other energy sources.

A Performance Estimation of Ground Source Heat Pump System Used both for Heating and Snow-melting (난방.융설 겸용 지열원 히트펌프시스템의 운전성능 평가)

  • Choi, Deok-In;Kim, Joong-Hun;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • This study proposes a hybrid geothermal system combined with heating mode and snow-melting mode for winter season in order to increase the annual operating efficiency of the GSHP(Ground Source Heat Pump). The purpose of this study is to get effectiveness of the hybrid geothermal system by the site experiments. In case of snow-melting only mode, the GSHP COP is 0.7 higher than system COP in average. And in case of hybrid mode, heating GSHP COP is 0.5 higher than snow-melting GSHP COP. And it is also found out that all COP obtained through measurement periods is higher than nominal COPs given by GSHP manufacturer. As a conclusion, it is clear that the proposed hybrid geothermal system is expected as a highly efficient system.

The Study on the Performance of the Fuel Cell Driven Compound Source Hybrid Heat Pump Heating and Cooling System to Large Community Building (대형 Community 건물의 연료전지 구동 복합열원 하이브리드 히트펌프 냉.난방 시스템 성능 해석)

  • Byun, Jae-Ki;Jeong, Dong-Hwa;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.82-87
    • /
    • 2007
  • In the present study, the simulation on the annual performance evaluation of a renewable energy systems with fuel cell driven compound source hybrid heat pump systems is applied to the heating and cooling of large community building. The large community building has the economical advantage to apply heat pump cooling and heating systems the long period operation. If air and ground source hybrid heat pump systems are combined, COP of the system can be increased largely. Fuel cell driven compound source hybrid heat pump system can reduced the fuel cost as well as thermal storage tank sharply.

  • PDF

An Evaluation and Prediction of Performance of Road Snow-melting System Utilized by Ground Source Heat Pump (지열원히트펌프를 활용한 도로융설시스템의 성능 평가 및 예측)

  • Choi, Deok-In;Hwang, Kwang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • Because of the climate changes and the development of building technologies, the cooling loads have been increased. Among the various renewable energies, geothermal energy is known as very useful and stable energy for heating and cooling of building. This study proposes a road snow-melting system of which heat is supplied from GSHP(Ground source heat pump) in viewpoint of the initial investment and annual running performance, which is also operating as a main facility of heating and cooling for common spaces. The results of this study is as followings. From the site measurement, it is found out that the road surface temperature above the geothermal heating pipe rose up to $5^{\circ}C$, which is the design temperature of road snow-melting, after 2 hours' operation and average COP(Coefficient of performance) was estimated as 3.5. The reliability of CFD has confirmed, because the temperature difference between results of CFD analysis and site measurement is only ${\pm}0.4^{\circ}C$ and the trend of temperature variation is quite similar. CFD analysis on the effect of pavement materials clearly show that more than 2 hours is needed for snow-melting, if the road is paved by ascon or concrete. But the road paved by brick is not reached to $5^{\circ}C$ at all. To evaluate the feasibility of snow-melting system operated by a geothermal circulation which has not GSHP, the surface temperature of concrete-paved road rise up to $0^{\circ}C$ after 2 hour and 40 minutes, and it does never increase to $5^{\circ}C$. And the roads paved by ascon and brick is maintained as below $0^{\circ}C$ after 12 hours geothermal circulation.

An Applicability Analysis of River Water Source Heat Pump System using EnergyPlus Simulation (에너지플러스 시뮬레이션을 통한 하천수 열원 히트펌프 시스템의 적용 가능성 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • A water source heat pump (WSHP) system is regarded as an energy-efficiency heating and cooling supply system for buildings due to its high energy efficiency and low greenhouse gas emissions. Recently, water sources such as river water, lake water, and raw water are attracting attention as heat sources for a heat pump system in Korea. This paper analyzed the applicability of a river water source heat pump system (RSHP). The river water temperature level was compared with the outdoor air and ground temperature levels to present applicability. In addition, the cooling and heating performance were compared through a simulation approach for the RSHP and a ground source heat pump (GSHP) applied to a large-scale office building. To compare the temperature level, the actual data were applied to the river water and the outdoor air, while the simulation results were applied to the ground circulation water. The results showed that the change in river water temperature throughout the year was similar to the change in outdoor air temperature. However, unlike the outdoor air temperature, the difference between the hourly and daily average river water temperatures was not large. The temperature level of river water was lower during the heating season and somewhat higher during the cooling season than that of the ground circulation water. Finally, the performance of the RSHP system was 13.4% lower than that of the GSHP system on an annual-based.

A Study on the Performance Evaluation of Hybrid Energy System with Geothermal and Solar Heat Sources (지열-태양열원 복합시스템의 성능평가에 관한 연구)

  • Hwang In-Ju;Woo Nam-Sub;Lee Hong-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • The present study concerns the annual performance evaluation of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of the residential buildings. The hybrid energy system consists of ground source heat pump of 2 RT for cooling, solar collectors of $4.8m^2$, storage tank of 250 liters and gas fired backup boiler of 11.6 kW. The averaged coefficients of performance of geothermal heat pump system during cooling and heating seasons are measured as 4.1 and 3.5, respectively. Also solar fraction for hot water is measured as 35 percent. Overall, the results shows that the hybrid-renewable energy system satisfactorily operated under all climatic conditions.