• Title/Summary/Keyword: 지열원 히트펌프

Search Result 74, Processing Time 0.024 seconds

Heating and Cooling Performance Characteristics of a Water-to-Water Heat Pump with R452B Refrigerant (R452B 냉매 적용 물대물 지열원 히트펌프 유닛의 냉난방 운전 성능 특성)

  • Choi, Youn Sung;Kang, Hee Jeong;Kim, Eun Oh
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.14-20
    • /
    • 2017
  • Refrigerant having high global warming potentials will be phased out due to environmental protection issues. R410A has been widely used in geothermal heat pump. However, it has a little high GWP by 2088 value. One of the recommended substitute for R410A refrigerant is R452B which having a GWP by 698 value. In this paper, the heating and cooling performance of the water-to-water geothermal heat pump unit with R452B was experimentally investigated. The performance of the heat pump adopting R452B was also compared with the system applying R410A. The heating and cooling capacity of R452B heat pump system showed a slightly lower values within 2% comparing with R410A system. However, the R452B system's coefficient of performance was enhanced by 5.2% and 13.7% at heating and cooling mode, respectively.

Analytical Study on the Performance of Ground Source Compound Hybrid Heat Pump System for Large Community Building (대형 Community 건물의 지열원 복합 하이브리드 히트펌프 시스템 성능에 관한 해석적 연구)

  • Byun, Jae-Ki;Jeong, Dong-Hwa;Lee, Jong-Gil;Hong, Seong-Ho;Choi, Young-Don;Cho, Sung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.634-637
    • /
    • 2008
  • Ground source heat pumps are clean, energy-efficient and environment-friendly systems cooling and heating. Although the initial cost of ground source heat pump system is higher than that of air source heat pump, it is now widely accepted as an economical system since the installation cost can be returned within an short period of time due to its high efficiency. In the present study, performances of ground source compound hybrid heat pump system applied to a large community building are simulated. The system design and operation process appropriate for the surrounding circumstance guarantee the high benefit of the heat pump system applied to a large community building. If among several renewable energy sources, ground, river, sea, waste water source are chosen as available alternative energies are combined, COP of the system can be increased largely and hybrid heat pump system can reduced the fuel cost.

  • PDF

Comparison of Energy Performance between Ground-Source Heat Pump System and Variable Refrigerant Flow(VRF) Systems using Simulation (시뮬레이션을 통한 지열 히트펌프 시스템과 VRF 시스템의 에너지 성능비교)

  • Sohn, Byonghu;Lim, Hyojae;Kang, Seongjae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • This paper compares the annual energy performance of four different types of air-conditioning systems in a medium-sized office building. Chiller and boiler, air-cooled VRF, ground-source VRF, and ground-source heat pump systems were selected as the systems to be compared. Specifically, the energy performance of the GSHP system and the ground-source VRF system were compared with each other and also with conventional HVAC systems including the chiller and boiler system and air-cooled VRF system. In order to evaluate and compare the energy performances of four systems for the office building, EnergyPlus, a whole-building energy simulation program, was used. The EnergyPlus simulation results show that both the GSHP and the ground-source VRF systems not only save more energy than the other two systems but also significantly reduce the electric peak demand. These make the GSHP and the VRF systems more desirable energy-efficient HVAC technologies for the utility companies and their clients. It is necessary to analyze the impact of partial load performance of ground-source heat pump and ground-source VRF on the long-term (more than 20 years) performance of ground heat exchangers and entire systems.

A Experimental Study on the Ground Source and Rain Water Heat Source Heat Pump System in Apartment (공동주택 적용 지열 및 우수열원을 이용한 히트펌프의 실험적 연구)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Lee, Euy-Joon;Hyun, Myung-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.833-837
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. In this study, the operating performance of rain water and ground source heat pump system (RW-GSHP) was compared with GSHP during the heating test. Leaving load temperature(LLT) was $50^{\circ}C$, $53^{\circ}C$, $56^{\circ}C$, respectively and rain water tank temperature(RWT) was $13^{\circ}C$, $15^{\circ}C$, $17^{\circ}C$ in this heating test. The experiment was focused on comparison of the system operating performance depending on leaving load temperature (LLT) and rain water tank temperature (RWT). The results showed that rain water and ground source heat pump system (RW-GSHP) was higher heating performance and COPh than those of GSHP.

  • PDF

Energy Performance Comparison of Electric Heater and Geothermal Source Heat Pump type Agricultural Hot Air Dryers (전기히터식 및 지열원 히트펌프식 농산물 열풍건조기의 에너지 성능 비교)

  • Yang, Won Suk;Kim, Young Il;Park, Seung Tae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2018
  • Energy performance of electric heater and geothermal source heat pump type hot air dryers are compared in this study. For set temperatures of $30^{\circ}C$, $35^{\circ}C$ and $40^{\circ}C$, radish is dried from initial mass 60 kg until it gets 5 kg, where the difference equals the amount of water removed. As set temperature is increased, drying time is shortened for both electric heater and heat pump types, however energy efficiency is decreased due to increasing electricity consumption. Moisture extraction rate(MER) of electric heater is 2.58~2.84 kg/h, and for heat pump type 2.56~2.71 kg/h, showing little difference between the two types. Specific moisture extraction rate (SMER) of electric heater is 0.94~0.96 kg/kWh, and for heat pump type 1.72~2.21 kg/kWh. SMER of heat pump type is greater by 0.78~1.25 kg/kWh than the electric heater hot air dryer, which is 1.8~2.3 times better in terms of energy efficiency.

Development of High Peformance Geothermal heatexchanger (고성능저가형 지중열교환기 개발연구)

  • An, Hyung-Jun;Baek, Sung-Kwon;Im, Sung-Kyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.470-473
    • /
    • 2007
  • Geothermal heat exchanger(GHEX) is a major component of Geothermal heat pump system(GSHPs). In Common, We use the vertical type GHEX in Korea. But vertical type GHEX needs a high cost for installation, because of drilling the hole which has 200m depth at max. So, We suggest the use of horizontal type GHEX. When we construct buildins, We excavate the ground and we can install the horizontal type GHEX at the excavated underground. It's very cheap and convenient method compare to vertical type GHEX installation. This study is peformed to estimate the peformance of horizontal type GHEX and to analyze effects of heat exchanger types and undergroundwater. As the result, slinky type GHEX has a 66% efficiency compare to vertical type GHEX and mat type has a 201% efficiency at the undergroundwater zone.

  • PDF

Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System (물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구)

  • Hong, Boo-Pyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

Comparative Study on Performance of Wet-type and Dry-type Floor Heating Systems Using Geothermal Heat Pump (지열히트펌프를 이용한 습식.건식 바닥난방 성능평가 연구)

  • Lee, Byoung-Doo;Lee, Se-Jin;Lee, Dae-Woo;Oh, Sung-Hae;Nam, Woo-Dong
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.60-65
    • /
    • 2009
  • The present study was conducted for a comparative evaluation of wet and dry floor heating systems using geothermal heat pump. We circulated hot water from geothermal heat pump which is $10{\sim}15^{\circ}C$ lower than that from boiler. In order to access indoor temperature ($25^{\circ}C$) it took 74 minutes for dry type and 247 minutes for wet type. Average floor temperature was $23.9^{\circ}C$ for wet type and $32.7^{\circ}C$ for dry type. Energy saving rate gradually increased by 66% after 138 minutes. As a result, in case of floor heating system using low temperature circulation water, dry type was more practicable for stable floor heating than wet type in terms of floor temperature and access time to indoor set temperature.

  • PDF

Performance of the Geothermal Heat Pump Using HFC32 Refrigerant (HFC32 냉매를 사용한 지열원 히트펌프의 성능 특성)

  • PARK, YONG-JUNG;PARK, BYUNG-DUCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.369-375
    • /
    • 2019
  • Air conditioners adopting high energy efficiency and low global warming potential (GWP) refrigerant are being developed globally. In case of commercial air conditioner, R32 with lower GWP than R410A is attracting industrial attentions. In this study, the performance of water-to-water geothermal heat pump adopting R32 is compared with that of the heat pump using R410A. By using R32 instead of R410A, heating capacity and COP in heating standard condition can be increased by 8.8% and 6.3% respectively. Also, cooling capacity and COP in cooling standard condition can be increased by 5.3% and 3.1% respectively by using R32. But in case of using R32, systemic improvements are required to decrease discharge temperature of compressor since discharge temperature rises abnormally in heating operations.

Study on COP Variations with the duration of Ground Source Heat Pump Systems Operation (지열히트펌프의 작동시간 경과에 따른 COP 변화에 대한 연구)

  • Lee, Yonggyu;Baek, Namchoon;Yoon, Eungsang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.198.2-198.2
    • /
    • 2010
  • In this study, the COP variation with the duration of Ground Source Heat Pump (GSHP) systems operation was analyzed by experiment. This experimental facility was installed in residential house as a back-up device of solar thermal heating system. The capacity of heat pump is 2.5 kW with a vertical bore hole of 150m depth. The COP of GSHP is varied, depending on the ground temperature which is used as a heat source. The ground heat source temperature influencing heating COP is the soil or rock temperature which adjoin with geo-source heat exchanger. This temperature is decreased rapidly according to the operation duration of heat pump. As a result, COP of GSHP is decreased to 3 in one hour of continuous operation time.

  • PDF