본 논문에서는 자동화 사격장 Pop-Up시스템의 안정성 및 성능 향상을 위해 예측제어기를 설계하여 시간지연에 따른 문제를 보상하였다. 확률 모델에 기반한 예측제어기는 지연된 이전의 값들로부터 선형예측 기법과 확률함수를 이용하여 실제의 값을 추정하며, 이를 제어기에 적용하여 시간지연에 따른 문제점을 최소화하였다. 제안된 알고리즘의 타당성을 검정하기 위해 사격용 Pop-Up시스템에 본 알고리즘을 실현하였으며, 상이한 시간지연과 이득 변화에 따른 제어기의 성능을 관측하였다. 실험결과 제안된 예측제어기는 시간지연에 대해 PID 제어기보다 빠른 수렴 특성을 보이며, 제어기의 안정범위 내에서 허용할 수 있는 최대 시간지연 값도 증가시킬 수 있었다. 따라서 사격용 타겟의 Pop & Up동작이 제어시간 이내에 원활하게 작동되어 연속 사격의 실시간 제어를 효율적으로 수행하였다.
Precise branch prediction is a critical factor in the IPC Improvement of modern microprocessor architectures. In addition to the branch prediction accuracy, branch prediction delay have a profound impact on overall system performance as well. However, it tends to be overlooked when the architects design the branch predictor. To tolerate branch prediction delay, this paper proposes Early Start Prediction (ESP) technique. The proposed solution dynamically identifies the start instruction of basic block, called as Basic Block Start Address (BB_SA), and the solution uses BB_SA when predicting the branch direction, instead of branch instruction address itself. The performance of the proposed scheme can be further improved by combining short interval hiding technique between BB_SA and branch instruction. The simulation result shows that the proposed solution hides prediction latency, with providing same level of prediction accuracy compared to the conventional predictors. Furthermore, the combination with short interval hiding technique provides a substantial IPC improvement of up to 10.1%, and the IPC is actually same with ideal branch predictor, regardless of branch predictor configurations, such as clock frequency, delay model, and PHT size.
Journal of the Korea Society of Computer and Information
/
v.14
no.10
/
pp.1-10
/
2009
Precise branch predictor has a profound impact on system performance in modern processor architectures. Recent works show that prediction latency as well as prediction accuracy has a critical impact on overall system performance as well. However, prediction latency tends to be overlooked. In this paper, we propose Branch Pre-Prediction policy to tolerate branch prediction latency. The proposed solution allows that branch predictor can proceed its prediction without any information from the fetch engine, separating the prediction engine from fetch stage. In addition, we propose newly modified BTE structure to support our solution. The simulation result shows that proposed solution can hide most prediction latency with still providing the same level of prediction accuracy. Furthermore, the proposed solution shows even better performance than the ideal case, that is the predictor which always takes a single cycle prediction latency. In our experiments, IPC improvement is up to 11.92% and 5.15% in average, compared to conventional predictor system.
Proceedings of the Korean Information Science Society Conference
/
2011.06d
/
pp.283-286
/
2011
무선 멀티홉 네트워크에서 멀티미디어 트래픽의 QoS(Quality of Service) 지원을 위하여 EDCA(Enhanced Distributed Channel Access) 기반의 동적 우선순위 할당 기법이 다수 제안되었다. 해당 기법들은 각 홉에서의 최소한의 전송 지연 보장을 위하여 클래스별 예상 지연 시간을 계산한다. 하지만 각 클래스별 예상 지연 시간의 계산은 무선 채널에서의 간섭, 충돌 및 링크 품질에 영향을 받기 때문에 정확한 예측이 어렵다. 본 논문에서는 EDCA 기반의 동적 우선순위 할당을 위한 정교한 클래스별 지연 시간 예측 기법을 제안한다. 제안하는 기법은 무선 채널의 링크 품질과 전송 패킷의 크기를 고려하여 좀더 실제와 유사한 지연 시간을 예측할 수 있다. 실험을 통해 제안하는 기법이 기존의 기법보다 정확성이 높으며 이를 통해 동적 우선순위 할당 기법의 성능을 향상시킬 수 있음을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.136-138
/
1998
작업들이 자원을 공유하는 경우 예측하기 어려운 지연시간이 발생한다. 다중 프로세서 시스템에서의 자원공유로 인한 지연시간은 더욱 예측하기 어렵다. 실기간 시스템의 스케줄 가능성 검사를 위해서는 이러한 지연시간을 정확히 예측해야한다. 선점가능한 우선순위 구동 CPU 스케줄링 알고리즘에 의해서 다른 우선순위의 작업과의 동기화는 우선순위 역전 문제를 야기한다. 본 논문에서는 다중 프로세서에서의 동기화 프로토콜을 제안하고 작업의 지연시간을 분석한다. 다른 프로세서에 할당된 작업들이 수행중인 자원을 요구할 때, 자원을 수행하는 작업의 우선순위를 높여줌으로써 자원수행을 빠르게 종료하게 한다. 이로 인해 자원에 의한 지연을 최소화한다. 특히, 높은 우선순위 작업의 경우 더욱 작은 지연시간을 갖게한다. 시뮬레이션을 통한 Shared Memory Protocol [5]과의 비교, 분석 결과 성능의 향상을 보임을 알 수 있다. 다양한 작업집합에 대한 지연시간을 분석하였다.
제어대상 시스템에 시간지연과 외란이 동시에 존재하는 경우, 스미스 예측기와 외란 관측기를 함께 사용하면 시간지연과 외란으로 인한 시스템의 성능저하를 완화할 수 있다. 하지만 시간지연이 유동적인 경우에는 설계된 스미스 예측기와 외란 관측기의 역할을 기대하기 어렵다. 본 논문은 시간지연을 갖는 2차 시스템 모델링 기법에 기반한 PID 제어기를 이용하여 시간 지연의 유동성에 대해 스미스 예측기와 외란 관측기의 강인성을 향상시키는 방법을 제안한다.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.2
/
pp.46-56
/
1999
A predictive controller is designed based upon stochastic methods for compensation time-delay effect on a system which has inherent time-delay caused by the spatial separation between controllers and actuators. The predictive controller estimates current outputs through linear prediction methods and probability functions utilizing previous outputs, and minimizes the malicious phenomena caused by the time-delay in precision control systems. To demonstrate effectiveness of this control methodology, we applied this algorithm for the control of a tele-operated DC servomotor. The experimental results show that this predictive controller is superior to the PID controller in terms of convergence-characteristics, and show that this controller expands the maximum allowable time-delay for a system maintaining the stability. Since the proposed predictor does not require models of plants - it requires only stochastic information for outputs --, it is a general scheme which can be applied for the control of systems which are difficult to model or the compensator of PID control.
In networked control systems, time-varying delay of the transmitting signal is inevitable. If the transmission delay is longer than the fixed sampling time, the system will be unstable. To solve this problem, this paper proposes the method to predict the delay using logic-based fuzzy neural networks, and the predicted time delay will be used as a sampling time in the networked control systems. To verify the effectiveness of the proposed method, the delay data collected from the real system are used to train and test the logic-based fuzzy neural networks.
본 연구는 백화점 고객이 신용 카드 신청 요구 시에 작성되는 가입 정보 및 사용되고 있는 고객의 거래 정보는 카드 사용 패턴으로 신용도를 예측하는 여러 방법론을 제시하고 성능을 비교하였다. 가입 정보를 분석하기 위해 역전파 신경망(Back-Propagation Neural Network, BPNN), 사례기반추론(Case-Based reasoning)을, 거래 정보를 분석하기 위해 역전파 신경망과 더불어 시간지연 신경망(Time-Delayed Neural Network, TDNN)을 각각 사용하여 그 결과를 비교하였다. 또한 전체시스템의 적중률을 높이기 위햐여, ID3와 신경망을 이용한 Meta-Leaning 방법을 제시하였으며, Meta-Learning 방법과 다른 방법들을 비교, 분석을 하였다. 본 연구에서는 모형 수립과 검증을 위하여 T백화점의 실제 신용 카드 가입 고객 데이터를 이용하여 실험하였다. 데이터의 성격에 따라 각 모델의 예측력에는 차이가 나타났으나, 신경망 모형의 예측력이 우수하였으며, 시간적 특성을 고려하는 시간지연 신경회로망 모형의 예측력은 더욱 우수하게 나타났다. 또한 Meta-Learning 모형을 사용하면 예측력이 더 높아진다는 것을 확인할 수 있었다.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.4
/
pp.449-455
/
2011
In this paper, a time-delay problem of a tele-operated control system is investigated and compensated by neural network. The smith predictor requires an exact system model to deal with a time-delay in the system. To compensate for modeling errors in the configuration of the Smith predictor, a neural network approach is presented. Based on forming the Smith predictor structure, the radial basis function(RBF) neural network estimator is used. Simulation and experimental studies are conducted to show the functionality of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.