• 제목/요약/키워드: 지역적 피쳐

검색결과 6건 처리시간 0.019초

단순 전처리 방법과 수정된 지역적 피쳐 추출기법을 이용한 다중 적외선영상 자동 기하보정 (Automatic Registration between Multiple IR Images Using Simple Pre-processing Method and Modified Local Features Extraction Algorithm)

  • 김대성
    • 한국측량학회지
    • /
    • 제35권6호
    • /
    • pp.485-494
    • /
    • 2017
  • 본 연구는 단순 전처리 방법과 수정된 지역적 피쳐 추출기법을 이용하여 특성이 다른 적외선영상 자동 기하보정에 초점을 맞추고 있다. 입력영상은 히스토그램 평활화를 통해 중앙값과 절댓값을 이용하여 전처리를 수행하였으며, 추출 피쳐의 유사도를 거리가 아닌 각 개념으로 변경하여 적용함으로써, 영상간 밝기값 차이를 줄이는데 효과적으로 적용할 수 있도록 하였다. 기하보정 결과는 시각적인 방법과 Inverse RMSE 방식을 사용하여 평가하였으며, 영상의 특성 차이로 인해 기존의 지역적 피쳐 추출기법 적용으로 해결될 수 없었던 자동 기하보정이 본 알고리즘을 적용함으로써 높은 정합 신뢰도와 적용 편의성을 보임을 확인할 수 있었다. 이를 통해, 제안 방법이 특정 조건의 다중 센서 영상간 자동 기하보정 기법 중 하나로 사용될 수 있을 것으로 기대한다.

복합 피쳐 지원 3차원 GIS의 설계 (Design of 3D GIS Supporting Complex Features)

  • 김경호;최승걸;이종훈;양영규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (하)
    • /
    • pp.1309-1312
    • /
    • 2000
  • 컴포넌트를 기반으로 하는 소프트웨어 개발 방법론은 시스템의 규모가 크고 구성이 복잡한 지리정보 시스템에 효율적으로 적응될 수 있다. 이것은 특히 개방형 GIS를 위한 설계와 구현 방법에도 이용되고 있다. 본 논문에서는 복합 피쳐를 지원하는 3차원 지리정보시스템의 컴포넌트 기반 설계 사례에 대해 설명한다. 본 논문에서 제안한 시스템은 OpenGIS 규격과의 호환성을 고려하고 복합 피쳐 및 복합 지리요소를 지원하며 객체 지향 분석 설계 방법론을 이용하여 설계되었다. 본 시스템은 3차원 지리요소의 모델링, 가시화, 공간분석 기능과 4차원 공간 데이터에 대한 질의 기능을 포함하고 있다. 향 후 복잡한 도심 건물 지역을 대상으로 층별 시공간 관리 분석 시스템 등으로 응용될 전망이다.

  • PDF

해양환경 공간분포 패턴 분석을 위한 공간자기상관 적용 연구 - 광양만을 사례 지역으로 - (Application of Spatial Autocorrelation for the Spatial Distribution Pattern Analysis of Marine Environment - Case of Gwangyang Bay -)

  • 최현우;김계현;이철용
    • 한국지리정보학회지
    • /
    • 제10권4호
    • /
    • pp.60-74
    • /
    • 2007
  • 해양환경의 시공간적 분포 패턴을 정량적으로 분석하기 위해 남해 광양만 해양환경 관측 자료를 이용하여 글로벌 및 국지적 공간자기상관 통계를 적용하였다. 연구지역 전체의 해양환경 분포 패턴을 이해하기 위해 Moran's I, General G와 같은 글로벌 공간자기상관 지수를 사용하였으며, 대상 피쳐(feature)와 이웃 피쳐들과의 유사성 정도를 측정하고 hot spot 및 cold spot을 탐지하기 위해 국지적 Moran's I ($I_i$), $G_i{^*}$와 같은 LISA(local indicators of spatial association)를 사용하였고, 공간 군집 패턴의 신뢰성은 Z-score를 통한 통계적 유의성 검증을 수행하였다. 공간 통계 결과를 통해 년 중 해양환경 공간분포 패턴의 변화를 정량적으로 알 수 있었는데, 일반 해양수질, 영양염, 클로로필 및 식물플랑크톤은 여름철에 강한 군집 패턴을 보였다. 글로벌 지수에서 강한 군집 패턴을 보였을 때 속성 값의 공간적인 변화가 심한 음적 $I_i$ 값을 가지는 전선지역이 탐지되었다. 또한, 글로벌 지수에서 임의적 패턴을 보였을 때 국지적 지수인 $G_i{^*}$에서는 좁은 지역에서 hot spot과(또는) cold spot이 탐지되었다. 따라서 글로벌 지수는 연구 지역 전체 군집 패턴의 강도와 시계열적 변화 과정 탐지에, 국지적 지수를 통해서는 hot spot과 cold spot 위치 추적에 유용함을 알 수 있었다. 해양환경 공간분포 패턴과 군집 특성을 정량화는 것은 해양환경을 보다 깊이 이해할 수 있도록 할 뿐 아니라, 패턴의 원인을 찾는데도 중요한 역할을 할 것이다.

  • PDF

Edge 강화 2차원 필터와 주변 밝기에 따른 JND를 이용한 영상의 전역적 대비 향상 방법 (Global Contrast Enhancement Method for the Digital Image using 2D Filter to Enhance the edges and JND according to the Surrounding Brightness)

  • 김봉성;강봉순
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.99-100
    • /
    • 2015
  • 디지털 영상은 촬영 시의 여러 가지 환경적 요인 때문에 블러 현상이 발생할 수 있다. 블러 현상이 발생하면 영상 내 저주파 성분이 많아져서 영상의 품질은 떨어트린다. 이러한 문제점을 해결하기 위한 영상 대비 향상에 대한 여러 가지 방법이 제시되어 왔다. Edge 강화 2차원 필터는 처리 속도가 빠르고 간단한 대비 향상 방법이다. 하지만 인간 시각 시스템은 영상 내에서 지역적으로 주변 밝기에 따라 민감도가 다르다. 따라서 본 논문에서는 Edge 강화 2차원 필터와 주변 밝기에 따른 JND(Just Noticeable Difference)를 이용한 피쳐 기반의 디지털 영상 대비 향상 방법에 대하여 제안한다. 제안된 방법으로 영상 대비를 향상시키고 그 결과를 확인할 수 있었다.

  • PDF

Histogram Of Gradients (HOG) 피쳐와 Support Vector Machine (SVM) 분류기를 이용한 위성영상에서 관심물체 탐색 방법 (Detection method of objects with a special pattern in satellite images using Histogram Of Gradients (HOG) feature and Support Vector Machine (SVM) classifier)

  • 임인근;김수환;최종국
    • 대한원격탐사학회지
    • /
    • 제30권4호
    • /
    • pp.537-546
    • /
    • 2014
  • 본 논문은 비 접근 지역에 존재하는 관심물체의 위치를 고해상도 광학 위성영상을 이용하여 찾아내기 위한 방법을 제안한다. 관심물체는 정확하게 규정된 크기와 모양을 갖는 것이 아니라, 개념적으로 유사한 패턴을 가진 물체들의 집합이다. 본 논문에서는 유사 객체 검색에서 Histogram of Gradients (HOG) feature를 이용하여 입력 영상의 관심물체의 특징을 추출하고, 추출된 특징 데이터를 이용하여 다른 영상들의 관심물체를 탐색하는 Support Vector Machine (SVM) 학습 및 분류기를 개발하였다. 제안한 방법은 관심물체를 자동으로 찾아줌으로써, 넓은 영역에서 수동으로 관심물체를 탐색하는데 소요되는 시간과 노력을 줄일 수 있는 효과가 있음을 확인하였다.

자산변동 좌표 클러스터링 기반 게임봇 탐지 (Game-bot detection based on Clustering of asset-varied location coordinates)

  • 송현민;김휘강
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1131-1141
    • /
    • 2015
  • 본 논문에서는 MMORPG에서 각 캐릭터의 소지금 증가/감소 이벤트 로그 데이터를 위주로 플레이어의 액션 로그 데이터를 조사하여 게임봇을 탐지하는 기계 학습 기반의 새로운 접근 방법을 제안한다. 게임봇 계정과 일반 계정을 구분하는 주요 피쳐를 추출하기 위해 밀도 기반 군집화 알고리즘의 하나인 DBSCAN (Density Based Spatial Clustering of Application with Noise)를 이용하였다. DBSCAN 알고리즘을 통해 각 플레이어의 소지금 증가/감소 위치 좌표를 클러스터링하고, 그 결과 생성된 클러스터의 수, 코어 포인트의 비율, 멤버 포인트의 비율, 노이즈 포인트의 비율과 같은 공간적 특성을 나타내는 값들을 추출하였다. 해당 피쳐들을 사용하면 게임봇 개발자들이 게임봇 탐지 시스템의 원리를 알더라도 넓은 지역을 돌아다니며 사냥을 하도록 게임봇 프로그램을 제작하는 것은 매우 비효율적이기 때문에 탐지 시스템을 우회하기 어렵게 된다. 결과적으로, 게임봇은 소지금 변동 좌표 데이터로부터 추출한 공간적 특성에서 일반유저와 명확한 차이를 보였다. 예를 들면, DBSCAN 클러스터링 결과 중 노이즈 포인트의 비율에서 게임봇은 5% 이하의 낮은 값을 가지는 반면에 일반 유저들은 대부분 높은 값을 갖는다. 실제 MMORPG의 액션 로그 데이터를 이용한 게임봇 탐지에서, 본 논문에서 제안된 시스템은 높은 탐지율의 우수한 성능을 보였다.