• Title/Summary/Keyword: 지속하중

Search Result 296, Processing Time 0.023 seconds

A Study on Lateral Displacement of Caisson Constructed on Improved Ground (개량 지반에 설치된 케이슨의 측방변위에 대한 연구)

  • Kim, Myunghak;Lee, Sangwook;Yoon, Minseung;Han, Byungwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 2011
  • In case of building up port facilities on soft ground, unsymmetrical surcharge of embankment, which make the excess pore water pressure to increase, causes to occur lateral displacement due to plasticity of soil. A study on lateral displacement and settlement of the caisson, which is installed on improved ground, was accomplished. The field measurement data and calculated values obtained from FEM program of Plaxis were compared and analyzed. For numerical analysis, the properties of soils, constructions stage and time were considered. Lateral displacement was measured at the point of inclinometers installed in front of caisson. Settlement was measured at the center of extra embankment behind of caisson. Comparison of measured and calculated for lateral displacement showed that the calculated value was greater than the measured, and increasing trend was different. The calculated value showed step increasing as step extra embankment applied, whereas the measured gradually was increased. For settlement of embankment, the amount of both measured and calculated were similar, but the trend was different like that of lateral movement.

Rehabilitation of a patient by converting poorly maintained fixed implant prosthesis into implant overdenture: a case report (기존 임플란트 보철물의 불량한 유지관리를 개선하기 위해 임플란트 피개의치로의 상부 보철물 전환 증례)

  • Kim, Yeong-Kyu;Jeong, Chang-Mo;Yun, Mi-Jung;Lee, So-Hyoun;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.1
    • /
    • pp.127-134
    • /
    • 2022
  • Among many contributing factors of implant failure, excessive loading and inflammation contribute mainly to increasing implant failure rate. Especially, poor oral hygiene around implants is one of the most common reasons for implant failure. When implant prosthesis fails to function, the clinician should re-diagnose and plan treatment using the remaining implants. Additional implantation may be needed to make a new type of prosthesis or either implant-assisted RPD and implant overdenture treatment may be performed using the remaining implants. In this article, a patient whose fixed implant prosthesis in the maxilla had failed of poor oral hygiene maintenance was reported to be recovered with removable implant overdenture by using remaining implant abutments and a milled bar with additional retentive elements. Through this treatment, the clinical results were satisfactory in terms of esthetics, masticatory function recovery and oral hygiene management.

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.

Damage-Spread Analysis of Heterogeneous Damage with Crack Degradation Model of Deck in RC Slab Bridges (RC 슬래브교의 바닥판 균열 열화모델에 따른 이종손상 확산 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Kim, Jae-Hwan;Part, Ki-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.93-101
    • /
    • 2022
  • RC Slab bridges in Korea account for more than 70% of the total bridges for more than 20 years of service. As the number of aging structures increases, the importance of safety diagnosis and maintenance of structures increases. For highway bridges, cracks are a main cause of deck deterioration, which is very closely related to the decrease in bridge durability and service life. In addition, the damage rate of expansion joints and bearings accounts for approximately 73% higher than that of major members. Therefore, this study defined damage scenarios combined with devices damages and deck deterioration. The stress distribution and maximum stress on the deck were then evaluated using design vehicle load and daily temperature gradient for single and combined damage scenarios. Furthermore, this study performed damage-spread analysis and predicted condition ratings according to a deck deterioration model generated from the inspection and diagnosis history data of cracks. The heterogeneous damages combined with the member damages of expansion joints and bearings increased the rate of crack area and damage spread, which accelerated the time to reach the condition rating of C. Therefore, damage to bridge members requires proper and prompt repair and replacement, and otherwise it can cause the damage to bridge deck and the spread of the damage.

Analysis of Relative Settlement Behavior of Retaining Wall Backside Ground Using Clustering (군집분류를 이용한 흙막이 벽체 배면 지반의 상대적 침하거동 분석)

  • Young-Jun Kwack;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.189-200
    • /
    • 2023
  • As urbanization and industrialization increase development in downtown areas, damage due to ground settlement continues to occur. Building collapse in urban has a high risk of leading to large-scale damage to life and property. However, there has rarely been studied on measurement data analysis methods when uneven loads are applied to the excavated ground and no prior knowledge of the ground. Accordingly, it was attempted to analyze the relative settlement behavior and correlation by processing the time-series surface settlement of construction sites in the urban. In this paper, the average index of difference in settlement and average of relative difference in settlement are defined and calculated, then plotted in the coordinate system to analyze the relative settlement behavior over time. In addition, since there was no prior knowledge of the ground, a standard to classify the clusters was needed, and the observation points were classified into using k-means clustering and Dunn Index. As a result of the analysis, it was confirmed that all the clusters moved to the stable region as the settlement amount converges. The clusters were segmented. Based on the analysis results, it was possible to distinguish between the independent displacement area and same behavior area by analyzing the correlation between measurement points. If possible to analyze the relative settlement behavior between the stations and classify the behavior areas, it can be helpful in settlement and stability management, such as uplift of the surrounding area, prediction of ground failure area, and prevention of activity failure.

A Case Study on the Hybrid Reinforcement Retaining Wall System Reinforced by Soil Nail and Steel Strip (쏘일네일과 강재스트립으로 보강된 복합보강토옹벽 시스템의 사례연구)

  • Chun, Byung-Sik;Kim, Hong-Taek;Cho, Hyun-Soo;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.5-12
    • /
    • 2008
  • The reinforced earth wall, which is able to improve the strength of soil highly, is required in case of supporting high surcharge load such as high speed rail way, high embankment road, and massive reinforced earth wall in a mountainous area. And also, it is continuously required that the method is able to minimize the amount of excavated soil on account of environmental issue, boundary of land, etc., on excavation site. However, because the required length of reinforcement should be $60{\sim}80%$ of the height of reinforced earth wall for general reinforced earth wall, in fact the reinforced earth wall is hardly applied on the site of cut slope. In this paper we studied the design and construction cases of hybrid reinforcement retaining wall system combined with steel strips and soil nails, connecting the reinforced earth wall reinforcements to the slope stability reinforcements (soil nails) to ensure sufficient resistance by means of reducing the length of reinforcements of reinforced earth wall. And the feasibility of hybrid reinforcement retaining wall system, suggested by real data measured on site, is also discussed.

Prediction of the Damage Zone Induced by Rock Blasting Using a Radial Crack Model (방사균열 모델을 적용한 암반 발파에 의한 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.55-64
    • /
    • 2006
  • It is very Important to predict the damage zone of a rock mass induced by blasting for the excavation of an underground cavity such as a tunnel, as the damage zones incur mechanical and hydraulic instability of the rock mass potentially. Complicated blasting processes that can hinder the proper characterization of the damage zone can be effectively represented by two loading mechanisms. The first mechanism is the dynamic impulsive load-generating stress waves that radiate outwards immediately after detonation. This load creates a crushed annulus along with cracks around the blasthole. The second is the gas pressure that remains for an extended time after detonation. As the gas pressure reopens some arrested cracks and extends these, it contributes to the final structure of the damage zone induced by the blasting. This paper presents a simple method to evaluate the damage zone induced by gas pressure during rock blasting. The damage zone is characterized by analyzing crack propagations from the blasthole. To do this, a model of a blasthole with a number of radial cracks that are equal in length in a homogeneous infinite elastic plane is considered. In this model, crack propagation is simulated through the use of only two conditions: a crack propagation criterion and the mass conservation of the gas. The results show that the stress intensity factor of a crack decreases as the crack propagates from the blasthole, which determines the crack length. In addition, it was found that the blasthole pressure continues to decrease during crack propagation.

Structural Analysis of the Governing Variables Affecting the Structural Strength Evaluation of the Lashing Bridges in Container Vessels (컨테이너선 라싱 브릿지 구조 강도 평가에 영향을 미치는 주요 변수의 구조해석)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.230-237
    • /
    • 2023
  • Due to the COVID-19 pandemic and climate change, shortages of essential commodities and resources continue to occur globally. To address this problem, trade volume demand suddenly increased, driving up the freight rate of container ships sharply. The size of container vessels progressively increased from 1,500 TEU (twenty-foot equivalent unit) in the 1960s to 24,400 TEU in 2021. As the improvement of container loading capacity is closely related to the enlargement of the lashing bridge structure, it is necessary to design a structure effective for good container securing and safe under the various external loads that occur during voyage. Major classification societies have recently issued structural-analysis-based guidelines to evaluate the structural safety of lashing bridges, but their acceptance criteria and evaluation methods are different, causing confusion among engineers during design. In this study, the strength change characteristics are summarized by variations in the main variables (modeling range, opening consideration, mesh size) likely to affect the results. Based on this result, the authors propose a reasonable structural-analysis-based evaluation that is expected to serve as a reference in the next revision of classification standards.

An Evaluation of Crack Resistance for Slag Asphalt Concrete Mixture Using Steel Slag Aggregates (제강슬래그 골재를 사용한 슬래그 아스팔트 혼합물의 균열저항성 평가)

  • Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • With the continuous industrial development, not only natural resource depletion, waste generation, but also various weather conditions are becoming more frequent. Efforts are continuing to recycle industrial by-products to overcome the climate crisis and save resources. Slag is a representative by-product generated in the steel industry, and it is characterized by improving rutting resistance and moisture sensitivity by increasing strength and reducing deformation when used as a material for asphalt concrete. On the other hand, slag has expansion properties so it is used as a relatively low-value-added material such as embankment and refilling materials. In order to expand the application of slag, an experiment was conducted to evaluate the crack resistance of slag asphalt concrete pavement. As a result of the indirect tensile strength test, it was found that the asphalt mixture using slag aggregate showed a value 1.13 times higher than that of the general HMA with the same particle size, and the toughness was 1.17 units, improving crack resistance. In addition, it was found that the failure number of the 4-point beam fatigue experiment and the slag asphalt mixture was 20,409, which was more than doubled compared to the general HMA. Furthermore, Overlay Test showed a tensile load residual rate of 4 times or more, improving crack resistance to repeated fatigue. Accordingly, the use of slag aggregate will likely have various advantages in improving the performance of asphalt concrete pavement.

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.