• Title/Summary/Keyword: 지상부 생장

Search Result 556, Processing Time 0.039 seconds

Mapping and estimating forest carbon absorption using time-series MODIS imagery in South Korea (시계열 MODIS 영상자료를 이용한 산림의 연간 탄소 흡수량 지도 작성)

  • Cha, Su-Young;Pi, Ung-Hwan;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.517-525
    • /
    • 2013
  • Time-series data of Normal Difference Vegetation Index (NDVI) obtained by the Moderate-resolution Imaging Spectroradiometer(MODIS) satellite imagery gives a waveform that reveals the characteristics of the phenology. The waveform can be decomposed into harmonics of various periods by the Fourier transformation. The resulting $n^{th}$ harmonics represent the amount of NDVI change in a period of a year divided by n. The values of each harmonics or their relative relation have been used to classify the vegetation species and to build a vegetation map. Here, we propose a method to estimate the annual amount of carbon absorbed on the forest from the $1^{st}$ harmonic NDVI value. The $1^{st}$ harmonic value represents the amount of growth of the leaves. By the allometric equation of trees, the growth of leaves can be considered to be proportional to the total amount of carbon absorption. We compared the $1^{st}$ harmonic NDVI values of the 6220 sample points with the reference data of the carbon absorption obtained by the field survey in the forest of South Korea. The $1^{st}$ harmonic values were roughly proportional to the amount of carbon absorption irrespective of the species and ages of the vegetation. The resulting proportionality constant between the carbon absorption and the $1^{st}$ harmonic value was 236 tCO2/5.29ha/year. The total amount of carbon dioxide absorption in the forest of South Korea over the last ten years has been estimated to be about 56 million ton, and this coincides with the previous reports obtained by other methods. Considering that the amount of the carbon absorption becomes a kind of currency like carbon credit, our method is very useful due to its generality.

Effects of the time, and the rate of potassium fertilization at nursery stage on the rooting activity in paddy rice plant (수도(水稻)의 발근(發根)에 미치는 묘대가리시용(苗垈加里施用)의 영향(影響))

  • Lee, E.W.;Lee, C.Y.;Kwon, Y.W.
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.119-124
    • /
    • 1968
  • In order to learn the effect of timing and rate of potash fertilization in the rice plant nursery on the root growth and the vegetative growth of later stage a pot experiment was carried out employing 'Jaekun' a rice variety. Potassium Chloride was applied at the rate of $0{\sim}100g\;K_{2}O/3.3m^2$ right before, and 30 days after seeding. Forty-day old seedlings were transplanted three times successively at the one week intervals with the roots cut each time. Each subject was observed in rooting and other useful traits. A part of seedlings after the third root scission were cultured intact thereafter and the yield characters examined. The results were shown as: 1. The rate of sound seedlings was high in the case that a small amount of potassium was applied as the basic placement while the application of the fertilizer over $75g/3.3m^2$ (as $K_{2}O$) yielded a far less crops. 2. The plant height, number of tillers, number of leaves, and grass weight increased as the amount of potassium was elevated. However, the application of $50g\;K_{2}O/3.3m^2$ in the basic placement and that of $75g\;K_{2}O/3.3m^2$ were the peaks over which the above mentioned characters were weakened. 3. As the amount of potassium was increased the increment in number of rooting was notable, especially when the scission of roots was repeated within the limit of $50{\sim}75g\;K_{2}O/3.3m^2$. 4. In the maximum root newly shooted length indicated was about the same tendency although no statistical significance was observed. 5. The plant height, number of tillers, and variation of weight between grass and root indicated a similar tendency as the number of root shoot. 6. The differences in number of ears, grain yield, and weight of straw between the treatments were not so great but showed somewhat similar trend as in the growth of transplanted plants. In the treatment-100g $K_{2}O/3.3m^2$ the yield (ears, grain and straw) decreased as in the non-fertilized.

  • PDF

Estimation of Long-term Effects of Harvest Interval and Intensity, and Post-harvest Residue Management on the Soil Carbon Stock of Pinus densiflora Stands using KFSC Model (한국형 산림토양탄소모델(KFSC)을 이용한 수확 주기 및 강도와 수확 후 잔재물 처리방법에 따른 소나무림 토양탄소 저장량의 장기 변화 추정 연구)

  • Park, Chan-Woo;Yi, Koong;Lee, Jongyeol;Lee, Kyeong-Hak;Yi, Myong-Jong;Kim, Choonsig;Park, Gwan-Soo;Kim, Raehyun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.82-89
    • /
    • 2013
  • Harvest is one of the major disturbances affecting the soil carbon (C) dynamics in forests. However, researches on the long-term impact of periodic harvest on the soil C dynamics are limited since they requires rigorous control of various factors. Therefore, we adopted a modeling approach to determine the long-term impacts of harvest interval, harvest intensity and post-harvest residue management on soil C dynamics by using the Korean Forest Soil Carbon model (KFSC model). The simulation was conducted on Pinus densiflora S. et Z. stands in central Korea, and twelve harvest scenarios were tested by altering harvest intervals (50, 80, and 100-year interval), intensities (partial-cut harvest: 30% and clear-cut harvest: 100% of stand volume), and the residue managements after harvest (collection: 0% and retention: 100% of aboveground residue). We simulated the soil carbon stock for 400 years for each scenario. As a result, the soil C stocks in depth of 30 cm after 400 years range from 50.3 to 55.8 Mg C $ha^{-1}$, corresponding to 98.1 to 108.9% of the C stock at present. The soil C stock under the scenarios with residue retention was 2.5-11.0% higher than that under scenarios with residue collection. However, there was no significant impact of harvest interval and intensity on the soil C stock. The soil C dynamics depended on the dead organic matter dynamics derived from the amount of dead organic matter and growth pattern after harvest.

A New Garlic Cultivar 'Alkae' and Scape Removal Affects Bulb Growth (마늘 신품종 '올케' 특성 및 화경제거가 구 비대에 미치는 영향)

  • Cboi, Young-Hah;Kim, Hong-Lim;Kim, Heung-Deug;Kwak, Yong-Bum
    • Journal of Bio-Environment Control
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • This study was carried out to investigate characteristics of new garlic cultivar 'Alkae' and to identify the effect of scape removal on bulb characteristics and growth of garlic cultivar 'Alkae' and 'Namdo'. Bolting time and harvesting time were earlier about 20 days in 'Alkae' than those in 'Namdo'. 'Alkae' was inferior to 'Namdo' in top growth as plant height, number of leaves, leaf area, SPAD value, diameter of leaf sheath, and so on. but root developing was better in 'Alkae'. Bulb weight of' Alkae' was 17% more than that of 'Namdo', harvested on proper time. The ratio of bulb weight over 40 g was almost double in 'Namdo' as 48% with 'Alkae' as 25%. Occurrence of bulb cracking was more considerable in 'Alkae' and the number of clove per bulb was 1.9 more in 'Alkae' than 'Namdo', but the ratio of bulb rot during storage was higher in 'Namdo' than 'Alkae'. In treatments of scape removal, SPAD value did not show any difference between two cultivars. Leaf dryness was earlier and harder than control and leaf area showed the same tendency as leaf dryness, and there were no significant differences among the methods of scape removal. The bulb weight and the ratio of bulb weight over 40 g at 50 days after the harvest of 'Alkae', 'Namdo' were more 10%, 12% and 27%, 44% in scape removal treatment than control. and there were no significant differences among the methods of scape removal. So, scape removal was very effective to increase large bulb production in the two garlic cultivals and the effect was higher in 'Namdo' than 'Alkae'. The ratio of bulb cracking and the occurrence of bulb rot were almost same in with the scape removal and non removal groups And also there were no significant differences among the methods of scape removal.

Influence of Bicarbonate Concentrations in Nutrient Solution on the Growth, Occurrence of Daughter Plants and Nutrient Uptake in Vegetative Propagation of 'Seolhyang' Strawberry (양액의 중탄산 농도가 '설향' 딸기의 생육, 자묘 발생 및 무기이온 흡수에 미치는 영향)

  • Lee, Hee Su;Choi, Jong Myung;Kim, Tae Il;Kim, Hyun Sook;Lee, In Ha
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • The objective of this research was to investigate the influence of bicarbonate ($HCO_3{^-}$) concentrations in nutrient solution on the growth and physiological disorders in mother plants and occurrence of daughter plants in propagation of 'Seolhyang' strawberry (Fragaria ${\times}$ ananassa Duch.). To achieve this, the mother plants were transplanted to coir dust + perlite (7:3, v/v) medium and Hoagland solution was modified to contain 60, 90 (control), 120, 180, and $240mg{\cdot}L^{-1}$ of $HCO_3{^-}$. The symptoms of Fe, Zn and B deficiencies appeared on the mother plants in the $HCO_3{^-}$ of $240mg{\cdot}L^{-1}$ from the 60th day after treatment. The symptoms spread to all plants in the $240mg{\cdot}L^{-1}$ $HCO_3{^-}$ including daughter plants at 90 days after treatment. The$HCO_3{^-}$ concentrations higher than $120mg{\cdot}L^{-1}$ suppressed the growth of mother plants such as leaf number, chlorophyll content, fresh weight and other growth parameters. While the mother plants in $60mg{\cdot}L^{-1}$ $HCO_3{^-}$ produced 23 daughter plants, while mother plants in $240mg{\cdot}L^{-1}$ $HCO_3{^-}$ produced 13 daughter plants. The final pH 126 days after treatment in the $HCO_3{^-}$ of 60, 90, 120, 180 and $240mg{\cdot}L^{-1}$ were 5.4, 5.8, 7.3, 7.9, and 8.3, respectively. The elevation of $HCO_3{^-}$ concentrations in nutrient solution resulted in the decrease of Fe, Mn, Zn and Cu contents of above ground tissue 126 days after treatment. These results indicate that the $HCO_3{^-}$ concentrations higher than $120mg{\cdot}L^{-1}$ inhibited the growth of mother plants and occurrence of daughter plants in vegetative propagation of 'Seolhyang' strawberry.

Varietal Difference of Growth Response to Soil Acidity in Soybean (토양산도에 따른 대두생육반응의 품질간 차이)

  • 이홍석;정병용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1987
  • To obtain basic information concerning the soybean cultivar differences of physiological and ecological responses to soil pH to select and breed stably higher yielding cultivars, and to improve cultural management of soil differing in pH, the responses of soybean plants in growth, grain yield, nodule formation and its activity, and major chemical compositions of soybean plants were investigated using six cultivars and two levels of soil pH 5 and 7 of the pot and field experimental soil in Suwon, 1985. Acidic soil condition suppressed overall vegetative growth of soybean plants and thereby decreased stem length, number of nodes, leaf area, dry weight of the plants, root activity, nodulation and nodule activity, the content of allantoin nitrogen, total nitrogen, phosphorous, calcium, and magnesium of the plants. Due to the such responses of soybean plants to the acid soil, grain yield also decreased along with less grains per plant. However, the little difference in growth and yield of the cultivar Janbaeglcong in response to soil pH is considered to be a good source of breeding materials tolerant to acidic soil condition. In this regard Bongeui and Oialkong also were relatively stable in the growth and grain yield under the different soil acidity conditions.

  • PDF

Effect of Night-break Timing on Growth, Bolting and Anthesis of Orostachys japonicus (암기중단 처리시기에 따른 바위솔의 생장, 추대 및 개화)

  • 강진호;류영섭;강신윤;심영도;김동일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.597-603
    • /
    • 1997
  • Orostachys japonicus, Wasong as herb medicine, has been artificially cultivated as an anti-tumor medicinal. The experiment was carried out to examine the effect of natural daylength as control or night-break treatment (NB) imposed at June 20, July 18 or Aug. 15 on its growth, dry weights of leaf and bract, stem, floret and root, and morphological characters including bolting and floret flowering. After a plant was grown in a 15cm plastic pot containing a 2 : 1 soil : peat moss mixture on May 23, three treatments with above differing night-break had been imposed around midnight up to Nov. 7. The plants were sampled 3 times at the same day forced to night-break and then done 6 times by 2-week interval after the final NB. Plant height and inflorescence length of all the NB increased with delayed NB but declined in comparison with the natural daylength. No. of leaves including bracts showed similar response to plant height although NB given before July 18 showed less leaves and bracts. Stem diameters of NB were continuously increased to middle Sept. to middle Oct. while that of natural daylength decreased after middle Oct. Natural daylength or NB given on Aug. 15 had greater fraction, shoot and total dry weights resulting from increment of leaf and bract up to Aug. or of floret, stem and root after Sept. The earlier NB, the later formation of florets and the less number of flowering florets whereas in natural daylength florets on inflorescence begun to be formed from middle Sept. were sharply increased up to middle Oct. when all the plants were flowered. Bolting was not formed in the plant of the earliest NB of June 20, and thereby no anthesis of florets up to early Nov. It was concluded that year-round cultivation of Orostachys japonicus plants was possible through controlling the NB timing because its bolting and flowering of florets separately occurred.

  • PDF

Foliar-application Effects of Urea and Potassium Phosphate on Fruit Characteristics and Reserve Accumulations of Persimmon Trees 75%-defoliated in Early Autumn (요소 및 제일인산칼륨 엽면시비가 초가을 잎 손실 감나무의 과실 특성과 저장양분 축적에 미치는 영향)

  • Choi, Seong-Tae;Park, Doo-Sang;Ahn, Gwang-Hwan;Kim, Sung-Chul;Choi, Tae-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • A severe defoliation by typhoon in early autumn reduces fruit quality for the current season and reserve accumulations for the next season. This study was conducted to determine the effects of foliar applications during the autumn on alleviating the damages after defoliation. Leaves of 2-year-old 'Fuyu' trees, grown in 50-L pots under a rain-shelter, were 75%-defoliated on September 9. In mid-September and early October, trees were treated either with eight foliar applications of urea or with four alternating applications of urea and $KH_2PO_4$ (urea + KP application), all at 0.5% (w/v). Trees untreated after the defoliation served as the control. The urea applications slightly increased N and P concentrations of the leaves collected on November 6, while urea + KP applications significantly increased P and K concentrations. Foliar applications did not affect fruit growth, but tended to decrease skin coloration. Fruit soluble solids increased by 1.5 and $1.0^{\circ}Brix$ for urea and urea + KP applications, respectively. There was a significant increase in dry weight of fine root for the foliar application treatments but not in those of aerial woods and larger roots. With the foliar applications, N concentration tended to increase in the permanent organs but not P and K, whereas soluble sugars and starch notably increased in shoot, trunk, or fine root regardless of the different applications. Results indicated that the foliar applications could partially help to restore fruit quality and carbohydrate accumulations in the defoliated trees.

Photosynthetic and Growth Responses of Chinese Cabbage to Rising Atmospheric CO2 (대기 중 CO2 농도의 상승에 대한 배추의 광합성과 생장 반응)

  • Oh, Soonja;Son, In-Chang;Wi, Seung Hwan;Song, Eun Young;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • The effects of elevated atmospheric $CO_2$ on photosynthesis and growth of Chinese cabbage (Brassica campestris subsp. napus var. pekinensis) were investigated to predict productivity in highland cropping in an environment where $CO_2$ levels are increasing. Vegetative growth, based on fresh weight of the aerial part, and leaf characteristics (number, area, length, and width) of Chinese cabbage grown for 5 weeks, increased significantly under elevated $CO_2$ ($800{\mu}mol{\cdot}mol^{-1}$) compared to ambient $CO_2$ ($400{\mu}mol{\cdot}mol^{-1}$). The photosynthetic rate (A), stomatal conductance ($g_s$), and water use efficiency (WUE) increased, although the transpiration rate (E) decreased, under elevated atmospheric $CO_2$. The photosynthetic light-response parameters, the maximum photosynthetic rate ($A_{max}$) and apparent quantum yield (${\varphi}$), were higher at elevated $CO_2$ than at ambient $CO_2$, while the light compensation point ($Q_{comp}$) was lower at elevated $CO_2$. In particular, the maximum photosynthetic rate ($A_{max}$) was higher at elevated $CO_2$ by 2.2-fold than at ambient $CO_2$. However, the photosynthetic $CO_2$-response parameters such as light respiration rate ($R_p$), maximum Rubisco carboxylation efficiency ($V_{cmax}$), and $CO_2$ compensation point (CCP) were less responsive to elevated $CO_2$ relative to the light-response parameters. The photochemical efficiency parameters ($F_v/F_m$, $F_v/F_o$) of PSII were not significantly affected by elevated $CO_2$, suggesting that elevated atmospheric $CO_2$ will not reduce the photosynthetic efficiency of Chinese cabbage in highland cropping. The optimal temperature for photosynthesis shifted significantly by about $2^{\circ}C$ under elevated $CO_2$. Above the optimal temperature, the photosynthetic rate (A) decreased and the dark respiration rate ($R_d$) increased as the temperature increased. These findings indicate that future increases in $CO_2$ will favor the growth of Chinese cabbage on highland cropping, and its productivity will increase due to the increase in photosynthetic affinity for light rather than $CO_2$.

Change in Potential Productivity of Rice around Lake Juam Due to Construction of Dam by SIMRIW (벼 생장모형 SIMRIW를 이용한 주암호 건설에 따른 주변지역의 벼 잠재생산성 변이 추정)

  • 임준택;윤진일;권병선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.729-738
    • /
    • 1997
  • To estimate the change in rice productivity around lake Juam due to construction of artificial lake, growth, yield components and yield of rice were measured at different locations around lake Juam for three years from 1994 to 1996. Automated weather stations(AWS) were installed nearby the experimental paddy fields, and daily maximum, average and minimum temperature, solar radiation, relative humidity, and precipitation were measured for the whole growing period of rice. Plant height, number of tillers, leaf area and shoot dry weight per hill were observed from 8 to 10 times in the interval of 7 days after transplanting. Yield and yield components of rice were observed at the harvest time. Simulation model of rice productivity used in the study was SIMRIW developed by Horie. The observed data of rice at 5 locations in 1994, 3 locations in 1995 and 4 locations in 1996 were inputted in the model to estimate the unknown parameters. Comparisons between observed and predicted values of shoot dry weights, leaf area indices, and rough rice yield were fairly well, so that SIMRIW appeared to predict relatively well the variations in productivity due to variations of climatic factors in the habitat. Climatic elements prior to as well as posterior to dam construction were generated at six locatons around lake Juam for thirty years by the method of Pickering et al. Climatic elements simulated in the study were daily maximum and minimum temperature, and amount of daily solar radiation. The change in rice productivity around lake Juam due to dam construction were estimated by inputting the generated climatic elements into SIMRIW. Average daily maximum temperature after dam construction appeared to be more or less lower than that before dam construction, while average daily minimum temperature became higher after dam construction. Average amount of daily solar radiation became lower with 0.9 MJ $d^{-1}$ after dam construction. As a result of simulation, the average productivity of habitats around lake Juam decreased about 5.6% by the construction of dam.

  • PDF